| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atansopn.d | ⊢ 𝐷  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 2 |  | atansopn.s | ⊢ 𝑆  =  { 𝑦  ∈  ℂ  ∣  ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  𝐷 } | 
						
							| 3 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 4 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 5 |  | resqcl | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑦 ↑ 2 )  ∈  ℝ ) | 
						
							| 6 |  | readdcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( 𝑦 ↑ 2 )  ∈  ℝ )  →  ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 7 | 4 5 6 | sylancr | ⊢ ( 𝑦  ∈  ℝ  →  ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 8 | 7 | recnd | ⊢ ( 𝑦  ∈  ℝ  →  ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 9 | 4 | a1i | ⊢ ( 𝑦  ∈  ℝ  →  1  ∈  ℝ ) | 
						
							| 10 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑦  ∈  ℝ  →  0  <  1 ) | 
						
							| 12 |  | sqge0 | ⊢ ( 𝑦  ∈  ℝ  →  0  ≤  ( 𝑦 ↑ 2 ) ) | 
						
							| 13 | 9 5 11 12 | addgtge0d | ⊢ ( 𝑦  ∈  ℝ  →  0  <  ( 1  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 14 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 15 |  | ltnle | ⊢ ( ( 0  ∈  ℝ  ∧  ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  ℝ )  →  ( 0  <  ( 1  +  ( 𝑦 ↑ 2 ) )  ↔  ¬  ( 1  +  ( 𝑦 ↑ 2 ) )  ≤  0 ) ) | 
						
							| 16 | 14 7 15 | sylancr | ⊢ ( 𝑦  ∈  ℝ  →  ( 0  <  ( 1  +  ( 𝑦 ↑ 2 ) )  ↔  ¬  ( 1  +  ( 𝑦 ↑ 2 ) )  ≤  0 ) ) | 
						
							| 17 | 13 16 | mpbid | ⊢ ( 𝑦  ∈  ℝ  →  ¬  ( 1  +  ( 𝑦 ↑ 2 ) )  ≤  0 ) | 
						
							| 18 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 19 |  | elioc2 | ⊢ ( ( -∞  ∈  ℝ*  ∧  0  ∈  ℝ )  →  ( ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  ( -∞ (,] 0 )  ↔  ( ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  ℝ  ∧  -∞  <  ( 1  +  ( 𝑦 ↑ 2 ) )  ∧  ( 1  +  ( 𝑦 ↑ 2 ) )  ≤  0 ) ) ) | 
						
							| 20 | 18 14 19 | mp2an | ⊢ ( ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  ( -∞ (,] 0 )  ↔  ( ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  ℝ  ∧  -∞  <  ( 1  +  ( 𝑦 ↑ 2 ) )  ∧  ( 1  +  ( 𝑦 ↑ 2 ) )  ≤  0 ) ) | 
						
							| 21 | 20 | simp3bi | ⊢ ( ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  ( -∞ (,] 0 )  →  ( 1  +  ( 𝑦 ↑ 2 ) )  ≤  0 ) | 
						
							| 22 | 17 21 | nsyl | ⊢ ( 𝑦  ∈  ℝ  →  ¬  ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  ( -∞ (,] 0 ) ) | 
						
							| 23 | 8 22 | eldifd | ⊢ ( 𝑦  ∈  ℝ  →  ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) ) | 
						
							| 24 | 23 1 | eleqtrrdi | ⊢ ( 𝑦  ∈  ℝ  →  ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  𝐷 ) | 
						
							| 25 | 24 | rgen | ⊢ ∀ 𝑦  ∈  ℝ ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  𝐷 | 
						
							| 26 |  | ssrab | ⊢ ( ℝ  ⊆  { 𝑦  ∈  ℂ  ∣  ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  𝐷 }  ↔  ( ℝ  ⊆  ℂ  ∧  ∀ 𝑦  ∈  ℝ ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  𝐷 ) ) | 
						
							| 27 | 3 25 26 | mpbir2an | ⊢ ℝ  ⊆  { 𝑦  ∈  ℂ  ∣  ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  𝐷 } | 
						
							| 28 | 27 2 | sseqtrri | ⊢ ℝ  ⊆  𝑆 |