| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tan4thpi |  |-  ( tan ` ( _pi / 4 ) ) = 1 | 
						
							| 2 | 1 | fveq2i |  |-  ( arctan ` ( tan ` ( _pi / 4 ) ) ) = ( arctan ` 1 ) | 
						
							| 3 |  | pire |  |-  _pi e. RR | 
						
							| 4 |  | 4nn |  |-  4 e. NN | 
						
							| 5 |  | nndivre |  |-  ( ( _pi e. RR /\ 4 e. NN ) -> ( _pi / 4 ) e. RR ) | 
						
							| 6 | 3 4 5 | mp2an |  |-  ( _pi / 4 ) e. RR | 
						
							| 7 | 6 | recni |  |-  ( _pi / 4 ) e. CC | 
						
							| 8 |  | rere |  |-  ( ( _pi / 4 ) e. RR -> ( Re ` ( _pi / 4 ) ) = ( _pi / 4 ) ) | 
						
							| 9 | 6 8 | ax-mp |  |-  ( Re ` ( _pi / 4 ) ) = ( _pi / 4 ) | 
						
							| 10 |  | pirp |  |-  _pi e. RR+ | 
						
							| 11 |  | rphalfcl |  |-  ( _pi e. RR+ -> ( _pi / 2 ) e. RR+ ) | 
						
							| 12 | 10 11 | ax-mp |  |-  ( _pi / 2 ) e. RR+ | 
						
							| 13 |  | rpgt0 |  |-  ( ( _pi / 2 ) e. RR+ -> 0 < ( _pi / 2 ) ) | 
						
							| 14 | 12 13 | ax-mp |  |-  0 < ( _pi / 2 ) | 
						
							| 15 |  | halfpire |  |-  ( _pi / 2 ) e. RR | 
						
							| 16 |  | lt0neg2 |  |-  ( ( _pi / 2 ) e. RR -> ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) | 
						
							| 18 | 14 17 | mpbi |  |-  -u ( _pi / 2 ) < 0 | 
						
							| 19 |  | nnrp |  |-  ( 4 e. NN -> 4 e. RR+ ) | 
						
							| 20 | 4 19 | ax-mp |  |-  4 e. RR+ | 
						
							| 21 |  | rpdivcl |  |-  ( ( _pi e. RR+ /\ 4 e. RR+ ) -> ( _pi / 4 ) e. RR+ ) | 
						
							| 22 | 10 20 21 | mp2an |  |-  ( _pi / 4 ) e. RR+ | 
						
							| 23 |  | rpgt0 |  |-  ( ( _pi / 4 ) e. RR+ -> 0 < ( _pi / 4 ) ) | 
						
							| 24 | 22 23 | ax-mp |  |-  0 < ( _pi / 4 ) | 
						
							| 25 |  | neghalfpire |  |-  -u ( _pi / 2 ) e. RR | 
						
							| 26 |  | 0re |  |-  0 e. RR | 
						
							| 27 | 25 26 6 | lttri |  |-  ( ( -u ( _pi / 2 ) < 0 /\ 0 < ( _pi / 4 ) ) -> -u ( _pi / 2 ) < ( _pi / 4 ) ) | 
						
							| 28 | 18 24 27 | mp2an |  |-  -u ( _pi / 2 ) < ( _pi / 4 ) | 
						
							| 29 | 3 | recni |  |-  _pi e. CC | 
						
							| 30 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 31 |  | divdiv1 |  |-  ( ( _pi e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( _pi / 2 ) / 2 ) = ( _pi / ( 2 x. 2 ) ) ) | 
						
							| 32 | 29 30 30 31 | mp3an |  |-  ( ( _pi / 2 ) / 2 ) = ( _pi / ( 2 x. 2 ) ) | 
						
							| 33 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 34 | 33 | oveq2i |  |-  ( _pi / ( 2 x. 2 ) ) = ( _pi / 4 ) | 
						
							| 35 | 32 34 | eqtri |  |-  ( ( _pi / 2 ) / 2 ) = ( _pi / 4 ) | 
						
							| 36 |  | rphalflt |  |-  ( ( _pi / 2 ) e. RR+ -> ( ( _pi / 2 ) / 2 ) < ( _pi / 2 ) ) | 
						
							| 37 | 12 36 | ax-mp |  |-  ( ( _pi / 2 ) / 2 ) < ( _pi / 2 ) | 
						
							| 38 | 35 37 | eqbrtrri |  |-  ( _pi / 4 ) < ( _pi / 2 ) | 
						
							| 39 | 25 | rexri |  |-  -u ( _pi / 2 ) e. RR* | 
						
							| 40 | 15 | rexri |  |-  ( _pi / 2 ) e. RR* | 
						
							| 41 |  | elioo2 |  |-  ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( _pi / 4 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( _pi / 4 ) e. RR /\ -u ( _pi / 2 ) < ( _pi / 4 ) /\ ( _pi / 4 ) < ( _pi / 2 ) ) ) ) | 
						
							| 42 | 39 40 41 | mp2an |  |-  ( ( _pi / 4 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( _pi / 4 ) e. RR /\ -u ( _pi / 2 ) < ( _pi / 4 ) /\ ( _pi / 4 ) < ( _pi / 2 ) ) ) | 
						
							| 43 | 6 28 38 42 | mpbir3an |  |-  ( _pi / 4 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) | 
						
							| 44 | 9 43 | eqeltri |  |-  ( Re ` ( _pi / 4 ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) | 
						
							| 45 |  | atantan |  |-  ( ( ( _pi / 4 ) e. CC /\ ( Re ` ( _pi / 4 ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arctan ` ( tan ` ( _pi / 4 ) ) ) = ( _pi / 4 ) ) | 
						
							| 46 | 7 44 45 | mp2an |  |-  ( arctan ` ( tan ` ( _pi / 4 ) ) ) = ( _pi / 4 ) | 
						
							| 47 | 2 46 | eqtr3i |  |-  ( arctan ` 1 ) = ( _pi / 4 ) |