| Step | Hyp | Ref | Expression | 
						
							| 1 |  | picn |  |-  _pi e. CC | 
						
							| 2 |  | 4cn |  |-  4 e. CC | 
						
							| 3 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 4 | 1 2 3 | divcli |  |-  ( _pi / 4 ) e. CC | 
						
							| 5 |  | sincos4thpi |  |-  ( ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) /\ ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) ) | 
						
							| 6 | 5 | simpri |  |-  ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) | 
						
							| 7 |  | sqrt2re |  |-  ( sqrt ` 2 ) e. RR | 
						
							| 8 | 7 | recni |  |-  ( sqrt ` 2 ) e. CC | 
						
							| 9 |  | 2re |  |-  2 e. RR | 
						
							| 10 |  | 2pos |  |-  0 < 2 | 
						
							| 11 | 9 10 | sqrtgt0ii |  |-  0 < ( sqrt ` 2 ) | 
						
							| 12 | 7 11 | gt0ne0ii |  |-  ( sqrt ` 2 ) =/= 0 | 
						
							| 13 |  | recne0 |  |-  ( ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) -> ( 1 / ( sqrt ` 2 ) ) =/= 0 ) | 
						
							| 14 | 8 12 13 | mp2an |  |-  ( 1 / ( sqrt ` 2 ) ) =/= 0 | 
						
							| 15 | 6 14 | eqnetri |  |-  ( cos ` ( _pi / 4 ) ) =/= 0 | 
						
							| 16 |  | tanval |  |-  ( ( ( _pi / 4 ) e. CC /\ ( cos ` ( _pi / 4 ) ) =/= 0 ) -> ( tan ` ( _pi / 4 ) ) = ( ( sin ` ( _pi / 4 ) ) / ( cos ` ( _pi / 4 ) ) ) ) | 
						
							| 17 | 4 15 16 | mp2an |  |-  ( tan ` ( _pi / 4 ) ) = ( ( sin ` ( _pi / 4 ) ) / ( cos ` ( _pi / 4 ) ) ) | 
						
							| 18 | 5 | simpli |  |-  ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) | 
						
							| 19 | 18 6 | oveq12i |  |-  ( ( sin ` ( _pi / 4 ) ) / ( cos ` ( _pi / 4 ) ) ) = ( ( 1 / ( sqrt ` 2 ) ) / ( 1 / ( sqrt ` 2 ) ) ) | 
						
							| 20 | 8 12 | reccli |  |-  ( 1 / ( sqrt ` 2 ) ) e. CC | 
						
							| 21 | 20 14 | dividi |  |-  ( ( 1 / ( sqrt ` 2 ) ) / ( 1 / ( sqrt ` 2 ) ) ) = 1 | 
						
							| 22 | 17 19 21 | 3eqtri |  |-  ( tan ` ( _pi / 4 ) ) = 1 |