Metamath Proof Explorer


Theorem tan4thpi

Description: The tangent of _pi / 4 . (Contributed by Mario Carneiro, 5-Apr-2015) (Proof shortened by SN, 2-Sep-2025)

Ref Expression
Assertion tan4thpi tan π 4 = 1

Proof

Step Hyp Ref Expression
1 picn π
2 4cn 4
3 4ne0 4 0
4 1 2 3 divcli π 4
5 sincos4thpi sin π 4 = 1 2 cos π 4 = 1 2
6 5 simpri cos π 4 = 1 2
7 sqrt2re 2
8 7 recni 2
9 2re 2
10 2pos 0 < 2
11 9 10 sqrtgt0ii 0 < 2
12 7 11 gt0ne0ii 2 0
13 recne0 2 2 0 1 2 0
14 8 12 13 mp2an 1 2 0
15 6 14 eqnetri cos π 4 0
16 tanval π 4 cos π 4 0 tan π 4 = sin π 4 cos π 4
17 4 15 16 mp2an tan π 4 = sin π 4 cos π 4
18 5 simpli sin π 4 = 1 2
19 18 6 oveq12i sin π 4 cos π 4 = 1 2 1 2
20 8 12 reccli 1 2
21 20 14 dividi 1 2 1 2 = 1
22 17 19 21 3eqtri tan π 4 = 1