Metamath Proof Explorer


Theorem tan4thpi

Description: The tangent of _pi / 4 . (Contributed by Mario Carneiro, 5-Apr-2015)

Ref Expression
Assertion tan4thpi tanπ4=1

Proof

Step Hyp Ref Expression
1 pire π
2 4nn 4
3 nndivre π4π4
4 1 2 3 mp2an π4
5 4 recni π4
6 sincos4thpi sinπ4=12cosπ4=12
7 6 simpri cosπ4=12
8 sqrt2re 2
9 8 recni 2
10 2re 2
11 0le2 02
12 resqrtth 20222=2
13 10 11 12 mp2an 22=2
14 2ne0 20
15 13 14 eqnetri 220
16 sqne0 222020
17 9 16 ax-mp 22020
18 15 17 mpbi 20
19 recne0 220120
20 9 18 19 mp2an 120
21 7 20 eqnetri cosπ40
22 tanval π4cosπ40tanπ4=sinπ4cosπ4
23 5 21 22 mp2an tanπ4=sinπ4cosπ4
24 6 simpli sinπ4=12
25 24 7 oveq12i sinπ4cosπ4=1212
26 9 18 reccli 12
27 26 20 dividi 1212=1
28 23 25 27 3eqtri tanπ4=1