Step |
Hyp |
Ref |
Expression |
1 |
|
picn |
⊢ π ∈ ℂ |
2 |
|
4cn |
⊢ 4 ∈ ℂ |
3 |
|
4ne0 |
⊢ 4 ≠ 0 |
4 |
1 2 3
|
divcli |
⊢ ( π / 4 ) ∈ ℂ |
5 |
|
sincos4thpi |
⊢ ( ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ∧ ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ) |
6 |
5
|
simpri |
⊢ ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) |
7 |
|
sqrt2re |
⊢ ( √ ‘ 2 ) ∈ ℝ |
8 |
7
|
recni |
⊢ ( √ ‘ 2 ) ∈ ℂ |
9 |
|
2re |
⊢ 2 ∈ ℝ |
10 |
|
2pos |
⊢ 0 < 2 |
11 |
9 10
|
sqrtgt0ii |
⊢ 0 < ( √ ‘ 2 ) |
12 |
7 11
|
gt0ne0ii |
⊢ ( √ ‘ 2 ) ≠ 0 |
13 |
|
recne0 |
⊢ ( ( ( √ ‘ 2 ) ∈ ℂ ∧ ( √ ‘ 2 ) ≠ 0 ) → ( 1 / ( √ ‘ 2 ) ) ≠ 0 ) |
14 |
8 12 13
|
mp2an |
⊢ ( 1 / ( √ ‘ 2 ) ) ≠ 0 |
15 |
6 14
|
eqnetri |
⊢ ( cos ‘ ( π / 4 ) ) ≠ 0 |
16 |
|
tanval |
⊢ ( ( ( π / 4 ) ∈ ℂ ∧ ( cos ‘ ( π / 4 ) ) ≠ 0 ) → ( tan ‘ ( π / 4 ) ) = ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) ) |
17 |
4 15 16
|
mp2an |
⊢ ( tan ‘ ( π / 4 ) ) = ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) |
18 |
5
|
simpli |
⊢ ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) |
19 |
18 6
|
oveq12i |
⊢ ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) = ( ( 1 / ( √ ‘ 2 ) ) / ( 1 / ( √ ‘ 2 ) ) ) |
20 |
8 12
|
reccli |
⊢ ( 1 / ( √ ‘ 2 ) ) ∈ ℂ |
21 |
20 14
|
dividi |
⊢ ( ( 1 / ( √ ‘ 2 ) ) / ( 1 / ( √ ‘ 2 ) ) ) = 1 |
22 |
17 19 21
|
3eqtri |
⊢ ( tan ‘ ( π / 4 ) ) = 1 |