| Step | Hyp | Ref | Expression | 
						
							| 1 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 2 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 3 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 4 | 1 2 3 | divcli | ⊢ ( π  /  4 )  ∈  ℂ | 
						
							| 5 |  | sincos4thpi | ⊢ ( ( sin ‘ ( π  /  4 ) )  =  ( 1  /  ( √ ‘ 2 ) )  ∧  ( cos ‘ ( π  /  4 ) )  =  ( 1  /  ( √ ‘ 2 ) ) ) | 
						
							| 6 | 5 | simpri | ⊢ ( cos ‘ ( π  /  4 ) )  =  ( 1  /  ( √ ‘ 2 ) ) | 
						
							| 7 |  | sqrt2re | ⊢ ( √ ‘ 2 )  ∈  ℝ | 
						
							| 8 | 7 | recni | ⊢ ( √ ‘ 2 )  ∈  ℂ | 
						
							| 9 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 10 |  | 2pos | ⊢ 0  <  2 | 
						
							| 11 | 9 10 | sqrtgt0ii | ⊢ 0  <  ( √ ‘ 2 ) | 
						
							| 12 | 7 11 | gt0ne0ii | ⊢ ( √ ‘ 2 )  ≠  0 | 
						
							| 13 |  | recne0 | ⊢ ( ( ( √ ‘ 2 )  ∈  ℂ  ∧  ( √ ‘ 2 )  ≠  0 )  →  ( 1  /  ( √ ‘ 2 ) )  ≠  0 ) | 
						
							| 14 | 8 12 13 | mp2an | ⊢ ( 1  /  ( √ ‘ 2 ) )  ≠  0 | 
						
							| 15 | 6 14 | eqnetri | ⊢ ( cos ‘ ( π  /  4 ) )  ≠  0 | 
						
							| 16 |  | tanval | ⊢ ( ( ( π  /  4 )  ∈  ℂ  ∧  ( cos ‘ ( π  /  4 ) )  ≠  0 )  →  ( tan ‘ ( π  /  4 ) )  =  ( ( sin ‘ ( π  /  4 ) )  /  ( cos ‘ ( π  /  4 ) ) ) ) | 
						
							| 17 | 4 15 16 | mp2an | ⊢ ( tan ‘ ( π  /  4 ) )  =  ( ( sin ‘ ( π  /  4 ) )  /  ( cos ‘ ( π  /  4 ) ) ) | 
						
							| 18 | 5 | simpli | ⊢ ( sin ‘ ( π  /  4 ) )  =  ( 1  /  ( √ ‘ 2 ) ) | 
						
							| 19 | 18 6 | oveq12i | ⊢ ( ( sin ‘ ( π  /  4 ) )  /  ( cos ‘ ( π  /  4 ) ) )  =  ( ( 1  /  ( √ ‘ 2 ) )  /  ( 1  /  ( √ ‘ 2 ) ) ) | 
						
							| 20 | 8 12 | reccli | ⊢ ( 1  /  ( √ ‘ 2 ) )  ∈  ℂ | 
						
							| 21 | 20 14 | dividi | ⊢ ( ( 1  /  ( √ ‘ 2 ) )  /  ( 1  /  ( √ ‘ 2 ) ) )  =  1 | 
						
							| 22 | 17 19 21 | 3eqtri | ⊢ ( tan ‘ ( π  /  4 ) )  =  1 |