| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 2 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 3 |  | nndivre | ⊢ ( ( π  ∈  ℝ  ∧  4  ∈  ℕ )  →  ( π  /  4 )  ∈  ℝ ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( π  /  4 )  ∈  ℝ | 
						
							| 5 | 4 | recni | ⊢ ( π  /  4 )  ∈  ℂ | 
						
							| 6 |  | sincos4thpi | ⊢ ( ( sin ‘ ( π  /  4 ) )  =  ( 1  /  ( √ ‘ 2 ) )  ∧  ( cos ‘ ( π  /  4 ) )  =  ( 1  /  ( √ ‘ 2 ) ) ) | 
						
							| 7 | 6 | simpri | ⊢ ( cos ‘ ( π  /  4 ) )  =  ( 1  /  ( √ ‘ 2 ) ) | 
						
							| 8 |  | sqrt2re | ⊢ ( √ ‘ 2 )  ∈  ℝ | 
						
							| 9 | 8 | recni | ⊢ ( √ ‘ 2 )  ∈  ℂ | 
						
							| 10 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 11 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 12 |  | resqrtth | ⊢ ( ( 2  ∈  ℝ  ∧  0  ≤  2 )  →  ( ( √ ‘ 2 ) ↑ 2 )  =  2 ) | 
						
							| 13 | 10 11 12 | mp2an | ⊢ ( ( √ ‘ 2 ) ↑ 2 )  =  2 | 
						
							| 14 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 15 | 13 14 | eqnetri | ⊢ ( ( √ ‘ 2 ) ↑ 2 )  ≠  0 | 
						
							| 16 |  | sqne0 | ⊢ ( ( √ ‘ 2 )  ∈  ℂ  →  ( ( ( √ ‘ 2 ) ↑ 2 )  ≠  0  ↔  ( √ ‘ 2 )  ≠  0 ) ) | 
						
							| 17 | 9 16 | ax-mp | ⊢ ( ( ( √ ‘ 2 ) ↑ 2 )  ≠  0  ↔  ( √ ‘ 2 )  ≠  0 ) | 
						
							| 18 | 15 17 | mpbi | ⊢ ( √ ‘ 2 )  ≠  0 | 
						
							| 19 |  | recne0 | ⊢ ( ( ( √ ‘ 2 )  ∈  ℂ  ∧  ( √ ‘ 2 )  ≠  0 )  →  ( 1  /  ( √ ‘ 2 ) )  ≠  0 ) | 
						
							| 20 | 9 18 19 | mp2an | ⊢ ( 1  /  ( √ ‘ 2 ) )  ≠  0 | 
						
							| 21 | 7 20 | eqnetri | ⊢ ( cos ‘ ( π  /  4 ) )  ≠  0 | 
						
							| 22 |  | tanval | ⊢ ( ( ( π  /  4 )  ∈  ℂ  ∧  ( cos ‘ ( π  /  4 ) )  ≠  0 )  →  ( tan ‘ ( π  /  4 ) )  =  ( ( sin ‘ ( π  /  4 ) )  /  ( cos ‘ ( π  /  4 ) ) ) ) | 
						
							| 23 | 5 21 22 | mp2an | ⊢ ( tan ‘ ( π  /  4 ) )  =  ( ( sin ‘ ( π  /  4 ) )  /  ( cos ‘ ( π  /  4 ) ) ) | 
						
							| 24 | 6 | simpli | ⊢ ( sin ‘ ( π  /  4 ) )  =  ( 1  /  ( √ ‘ 2 ) ) | 
						
							| 25 | 24 7 | oveq12i | ⊢ ( ( sin ‘ ( π  /  4 ) )  /  ( cos ‘ ( π  /  4 ) ) )  =  ( ( 1  /  ( √ ‘ 2 ) )  /  ( 1  /  ( √ ‘ 2 ) ) ) | 
						
							| 26 | 9 18 | reccli | ⊢ ( 1  /  ( √ ‘ 2 ) )  ∈  ℂ | 
						
							| 27 | 26 20 | dividi | ⊢ ( ( 1  /  ( √ ‘ 2 ) )  /  ( 1  /  ( √ ‘ 2 ) ) )  =  1 | 
						
							| 28 | 23 25 27 | 3eqtri | ⊢ ( tan ‘ ( π  /  4 ) )  =  1 |