Metamath Proof Explorer


Theorem tan4thpiOLD

Description: Obsolete version of tan4thpi as of 2-Sep-2025. (Contributed by Mario Carneiro, 5-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tan4thpiOLD tan π 4 = 1

Proof

Step Hyp Ref Expression
1 pire π
2 4nn 4
3 nndivre π 4 π 4
4 1 2 3 mp2an π 4
5 4 recni π 4
6 sincos4thpi sin π 4 = 1 2 cos π 4 = 1 2
7 6 simpri cos π 4 = 1 2
8 sqrt2re 2
9 8 recni 2
10 2re 2
11 0le2 0 2
12 resqrtth 2 0 2 2 2 = 2
13 10 11 12 mp2an 2 2 = 2
14 2ne0 2 0
15 13 14 eqnetri 2 2 0
16 sqne0 2 2 2 0 2 0
17 9 16 ax-mp 2 2 0 2 0
18 15 17 mpbi 2 0
19 recne0 2 2 0 1 2 0
20 9 18 19 mp2an 1 2 0
21 7 20 eqnetri cos π 4 0
22 tanval π 4 cos π 4 0 tan π 4 = sin π 4 cos π 4
23 5 21 22 mp2an tan π 4 = sin π 4 cos π 4
24 6 simpli sin π 4 = 1 2
25 24 7 oveq12i sin π 4 cos π 4 = 1 2 1 2
26 9 18 reccli 1 2
27 26 20 dividi 1 2 1 2 = 1
28 23 25 27 3eqtri tan π 4 = 1