Metamath Proof Explorer


Theorem atan1

Description: The arctangent of 1 is _pi / 4 . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion atan1 arctan1=π4

Proof

Step Hyp Ref Expression
1 tan4thpi tanπ4=1
2 1 fveq2i arctantanπ4=arctan1
3 pire π
4 4nn 4
5 nndivre π4π4
6 3 4 5 mp2an π4
7 6 recni π4
8 rere π4π4=π4
9 6 8 ax-mp π4=π4
10 pirp π+
11 rphalfcl π+π2+
12 10 11 ax-mp π2+
13 rpgt0 π2+0<π2
14 12 13 ax-mp 0<π2
15 halfpire π2
16 lt0neg2 π20<π2π2<0
17 15 16 ax-mp 0<π2π2<0
18 14 17 mpbi π2<0
19 nnrp 44+
20 4 19 ax-mp 4+
21 rpdivcl π+4+π4+
22 10 20 21 mp2an π4+
23 rpgt0 π4+0<π4
24 22 23 ax-mp 0<π4
25 neghalfpire π2
26 0re 0
27 25 26 6 lttri π2<00<π4π2<π4
28 18 24 27 mp2an π2<π4
29 3 recni π
30 2cnne0 220
31 divdiv1 π220220π22=π22
32 29 30 30 31 mp3an π22=π22
33 2t2e4 22=4
34 33 oveq2i π22=π4
35 32 34 eqtri π22=π4
36 rphalflt π2+π22<π2
37 12 36 ax-mp π22<π2
38 35 37 eqbrtrri π4<π2
39 25 rexri π2*
40 15 rexri π2*
41 elioo2 π2*π2*π4π2π2π4π2<π4π4<π2
42 39 40 41 mp2an π4π2π2π4π2<π4π4<π2
43 6 28 38 42 mpbir3an π4π2π2
44 9 43 eqeltri π4π2π2
45 atantan π4π4π2π2arctantanπ4=π4
46 7 44 45 mp2an arctantanπ4=π4
47 2 46 eqtr3i arctan1=π4