| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tan4thpi | ⊢ ( tan ‘ ( π  /  4 ) )  =  1 | 
						
							| 2 | 1 | fveq2i | ⊢ ( arctan ‘ ( tan ‘ ( π  /  4 ) ) )  =  ( arctan ‘ 1 ) | 
						
							| 3 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 4 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 5 |  | nndivre | ⊢ ( ( π  ∈  ℝ  ∧  4  ∈  ℕ )  →  ( π  /  4 )  ∈  ℝ ) | 
						
							| 6 | 3 4 5 | mp2an | ⊢ ( π  /  4 )  ∈  ℝ | 
						
							| 7 | 6 | recni | ⊢ ( π  /  4 )  ∈  ℂ | 
						
							| 8 |  | rere | ⊢ ( ( π  /  4 )  ∈  ℝ  →  ( ℜ ‘ ( π  /  4 ) )  =  ( π  /  4 ) ) | 
						
							| 9 | 6 8 | ax-mp | ⊢ ( ℜ ‘ ( π  /  4 ) )  =  ( π  /  4 ) | 
						
							| 10 |  | pirp | ⊢ π  ∈  ℝ+ | 
						
							| 11 |  | rphalfcl | ⊢ ( π  ∈  ℝ+  →  ( π  /  2 )  ∈  ℝ+ ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( π  /  2 )  ∈  ℝ+ | 
						
							| 13 |  | rpgt0 | ⊢ ( ( π  /  2 )  ∈  ℝ+  →  0  <  ( π  /  2 ) ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ 0  <  ( π  /  2 ) | 
						
							| 15 |  | halfpire | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 16 |  | lt0neg2 | ⊢ ( ( π  /  2 )  ∈  ℝ  →  ( 0  <  ( π  /  2 )  ↔  - ( π  /  2 )  <  0 ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( 0  <  ( π  /  2 )  ↔  - ( π  /  2 )  <  0 ) | 
						
							| 18 | 14 17 | mpbi | ⊢ - ( π  /  2 )  <  0 | 
						
							| 19 |  | nnrp | ⊢ ( 4  ∈  ℕ  →  4  ∈  ℝ+ ) | 
						
							| 20 | 4 19 | ax-mp | ⊢ 4  ∈  ℝ+ | 
						
							| 21 |  | rpdivcl | ⊢ ( ( π  ∈  ℝ+  ∧  4  ∈  ℝ+ )  →  ( π  /  4 )  ∈  ℝ+ ) | 
						
							| 22 | 10 20 21 | mp2an | ⊢ ( π  /  4 )  ∈  ℝ+ | 
						
							| 23 |  | rpgt0 | ⊢ ( ( π  /  4 )  ∈  ℝ+  →  0  <  ( π  /  4 ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ 0  <  ( π  /  4 ) | 
						
							| 25 |  | neghalfpire | ⊢ - ( π  /  2 )  ∈  ℝ | 
						
							| 26 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 27 | 25 26 6 | lttri | ⊢ ( ( - ( π  /  2 )  <  0  ∧  0  <  ( π  /  4 ) )  →  - ( π  /  2 )  <  ( π  /  4 ) ) | 
						
							| 28 | 18 24 27 | mp2an | ⊢ - ( π  /  2 )  <  ( π  /  4 ) | 
						
							| 29 | 3 | recni | ⊢ π  ∈  ℂ | 
						
							| 30 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 31 |  | divdiv1 | ⊢ ( ( π  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( π  /  2 )  /  2 )  =  ( π  /  ( 2  ·  2 ) ) ) | 
						
							| 32 | 29 30 30 31 | mp3an | ⊢ ( ( π  /  2 )  /  2 )  =  ( π  /  ( 2  ·  2 ) ) | 
						
							| 33 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 34 | 33 | oveq2i | ⊢ ( π  /  ( 2  ·  2 ) )  =  ( π  /  4 ) | 
						
							| 35 | 32 34 | eqtri | ⊢ ( ( π  /  2 )  /  2 )  =  ( π  /  4 ) | 
						
							| 36 |  | rphalflt | ⊢ ( ( π  /  2 )  ∈  ℝ+  →  ( ( π  /  2 )  /  2 )  <  ( π  /  2 ) ) | 
						
							| 37 | 12 36 | ax-mp | ⊢ ( ( π  /  2 )  /  2 )  <  ( π  /  2 ) | 
						
							| 38 | 35 37 | eqbrtrri | ⊢ ( π  /  4 )  <  ( π  /  2 ) | 
						
							| 39 | 25 | rexri | ⊢ - ( π  /  2 )  ∈  ℝ* | 
						
							| 40 | 15 | rexri | ⊢ ( π  /  2 )  ∈  ℝ* | 
						
							| 41 |  | elioo2 | ⊢ ( ( - ( π  /  2 )  ∈  ℝ*  ∧  ( π  /  2 )  ∈  ℝ* )  →  ( ( π  /  4 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ↔  ( ( π  /  4 )  ∈  ℝ  ∧  - ( π  /  2 )  <  ( π  /  4 )  ∧  ( π  /  4 )  <  ( π  /  2 ) ) ) ) | 
						
							| 42 | 39 40 41 | mp2an | ⊢ ( ( π  /  4 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ↔  ( ( π  /  4 )  ∈  ℝ  ∧  - ( π  /  2 )  <  ( π  /  4 )  ∧  ( π  /  4 )  <  ( π  /  2 ) ) ) | 
						
							| 43 | 6 28 38 42 | mpbir3an | ⊢ ( π  /  4 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) | 
						
							| 44 | 9 43 | eqeltri | ⊢ ( ℜ ‘ ( π  /  4 ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) | 
						
							| 45 |  | atantan | ⊢ ( ( ( π  /  4 )  ∈  ℂ  ∧  ( ℜ ‘ ( π  /  4 ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  →  ( arctan ‘ ( tan ‘ ( π  /  4 ) ) )  =  ( π  /  4 ) ) | 
						
							| 46 | 7 44 45 | mp2an | ⊢ ( arctan ‘ ( tan ‘ ( π  /  4 ) ) )  =  ( π  /  4 ) | 
						
							| 47 | 2 46 | eqtr3i | ⊢ ( arctan ‘ 1 )  =  ( π  /  4 ) |