| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cosne0 |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) =/= 0 ) | 
						
							| 2 |  | atandmtan |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. dom arctan ) | 
						
							| 3 | 1 2 | syldan |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( tan ` A ) e. dom arctan ) | 
						
							| 4 |  | atanval |  |-  ( ( tan ` A ) e. dom arctan -> ( arctan ` ( tan ` A ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arctan ` ( tan ` A ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) ) ) | 
						
							| 6 |  | ax-1cn |  |-  1 e. CC | 
						
							| 7 |  | ax-icn |  |-  _i e. CC | 
						
							| 8 |  | tancl |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. CC ) | 
						
							| 9 | 1 8 | syldan |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( tan ` A ) e. CC ) | 
						
							| 10 |  | mulcl |  |-  ( ( _i e. CC /\ ( tan ` A ) e. CC ) -> ( _i x. ( tan ` A ) ) e. CC ) | 
						
							| 11 | 7 9 10 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( tan ` A ) ) e. CC ) | 
						
							| 12 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. ( tan ` A ) ) e. CC ) -> ( 1 + ( _i x. ( tan ` A ) ) ) e. CC ) | 
						
							| 13 | 6 11 12 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 + ( _i x. ( tan ` A ) ) ) e. CC ) | 
						
							| 14 |  | atandm2 |  |-  ( ( tan ` A ) e. dom arctan <-> ( ( tan ` A ) e. CC /\ ( 1 - ( _i x. ( tan ` A ) ) ) =/= 0 /\ ( 1 + ( _i x. ( tan ` A ) ) ) =/= 0 ) ) | 
						
							| 15 | 3 14 | sylib |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( tan ` A ) e. CC /\ ( 1 - ( _i x. ( tan ` A ) ) ) =/= 0 /\ ( 1 + ( _i x. ( tan ` A ) ) ) =/= 0 ) ) | 
						
							| 16 | 15 | simp3d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 + ( _i x. ( tan ` A ) ) ) =/= 0 ) | 
						
							| 17 | 13 16 | logcld |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) e. CC ) | 
						
							| 18 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. ( tan ` A ) ) e. CC ) -> ( 1 - ( _i x. ( tan ` A ) ) ) e. CC ) | 
						
							| 19 | 6 11 18 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 - ( _i x. ( tan ` A ) ) ) e. CC ) | 
						
							| 20 | 15 | simp2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 - ( _i x. ( tan ` A ) ) ) =/= 0 ) | 
						
							| 21 | 19 20 | logcld |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) e. CC ) | 
						
							| 22 | 17 21 | negsubdi2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) = ( ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) ) | 
						
							| 23 |  | efsub |  |-  ( ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) e. CC /\ ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) e. CC ) -> ( exp ` ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) ) | 
						
							| 24 | 17 21 23 | syl2anc |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) ) | 
						
							| 25 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 26 | 25 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) e. CC ) | 
						
							| 27 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 28 | 27 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` A ) e. CC ) | 
						
							| 29 |  | mulcl |  |-  ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) | 
						
							| 30 | 7 28 29 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( sin ` A ) ) e. CC ) | 
						
							| 31 | 26 30 26 1 | divdird |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) / ( cos ` A ) ) = ( ( ( cos ` A ) / ( cos ` A ) ) + ( ( _i x. ( sin ` A ) ) / ( cos ` A ) ) ) ) | 
						
							| 32 | 26 1 | dividd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( cos ` A ) / ( cos ` A ) ) = 1 ) | 
						
							| 33 | 7 | a1i |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _i e. CC ) | 
						
							| 34 | 33 28 26 1 | divassd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. ( sin ` A ) ) / ( cos ` A ) ) = ( _i x. ( ( sin ` A ) / ( cos ` A ) ) ) ) | 
						
							| 35 |  | tanval |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 36 | 1 35 | syldan |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 37 | 36 | oveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( tan ` A ) ) = ( _i x. ( ( sin ` A ) / ( cos ` A ) ) ) ) | 
						
							| 38 | 34 37 | eqtr4d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. ( sin ` A ) ) / ( cos ` A ) ) = ( _i x. ( tan ` A ) ) ) | 
						
							| 39 | 32 38 | oveq12d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) / ( cos ` A ) ) + ( ( _i x. ( sin ` A ) ) / ( cos ` A ) ) ) = ( 1 + ( _i x. ( tan ` A ) ) ) ) | 
						
							| 40 | 31 39 | eqtrd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) / ( cos ` A ) ) = ( 1 + ( _i x. ( tan ` A ) ) ) ) | 
						
							| 41 |  | efival |  |-  ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) / ( cos ` A ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) / ( cos ` A ) ) ) | 
						
							| 44 |  | eflog |  |-  ( ( ( 1 + ( _i x. ( tan ` A ) ) ) e. CC /\ ( 1 + ( _i x. ( tan ` A ) ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) = ( 1 + ( _i x. ( tan ` A ) ) ) ) | 
						
							| 45 | 13 16 44 | syl2anc |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) = ( 1 + ( _i x. ( tan ` A ) ) ) ) | 
						
							| 46 | 40 43 45 | 3eqtr4d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) / ( cos ` A ) ) = ( exp ` ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) ) | 
						
							| 47 | 26 30 26 1 | divsubdird |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) / ( cos ` A ) ) = ( ( ( cos ` A ) / ( cos ` A ) ) - ( ( _i x. ( sin ` A ) ) / ( cos ` A ) ) ) ) | 
						
							| 48 | 32 38 | oveq12d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) / ( cos ` A ) ) - ( ( _i x. ( sin ` A ) ) / ( cos ` A ) ) ) = ( 1 - ( _i x. ( tan ` A ) ) ) ) | 
						
							| 49 | 47 48 | eqtrd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) / ( cos ` A ) ) = ( 1 - ( _i x. ( tan ` A ) ) ) ) | 
						
							| 50 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 51 | 50 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u A e. CC ) | 
						
							| 52 |  | efival |  |-  ( -u A e. CC -> ( exp ` ( _i x. -u A ) ) = ( ( cos ` -u A ) + ( _i x. ( sin ` -u A ) ) ) ) | 
						
							| 53 | 51 52 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. -u A ) ) = ( ( cos ` -u A ) + ( _i x. ( sin ` -u A ) ) ) ) | 
						
							| 54 |  | cosneg |  |-  ( A e. CC -> ( cos ` -u A ) = ( cos ` A ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` -u A ) = ( cos ` A ) ) | 
						
							| 56 |  | sinneg |  |-  ( A e. CC -> ( sin ` -u A ) = -u ( sin ` A ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` -u A ) = -u ( sin ` A ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( sin ` -u A ) ) = ( _i x. -u ( sin ` A ) ) ) | 
						
							| 59 |  | mulneg2 |  |-  ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. -u ( sin ` A ) ) = -u ( _i x. ( sin ` A ) ) ) | 
						
							| 60 | 7 28 59 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. -u ( sin ` A ) ) = -u ( _i x. ( sin ` A ) ) ) | 
						
							| 61 | 58 60 | eqtrd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( sin ` -u A ) ) = -u ( _i x. ( sin ` A ) ) ) | 
						
							| 62 | 55 61 | oveq12d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( cos ` -u A ) + ( _i x. ( sin ` -u A ) ) ) = ( ( cos ` A ) + -u ( _i x. ( sin ` A ) ) ) ) | 
						
							| 63 | 53 62 | eqtrd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. -u A ) ) = ( ( cos ` A ) + -u ( _i x. ( sin ` A ) ) ) ) | 
						
							| 64 |  | simpl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> A e. CC ) | 
						
							| 65 |  | mulneg2 |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 66 | 7 64 65 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 67 | 66 | fveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. -u A ) ) = ( exp ` -u ( _i x. A ) ) ) | 
						
							| 68 | 26 30 | negsubd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( cos ` A ) + -u ( _i x. ( sin ` A ) ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) | 
						
							| 69 | 63 67 68 | 3eqtr3d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` -u ( _i x. A ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) | 
						
							| 70 | 69 | oveq1d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` -u ( _i x. A ) ) / ( cos ` A ) ) = ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) / ( cos ` A ) ) ) | 
						
							| 71 |  | eflog |  |-  ( ( ( 1 - ( _i x. ( tan ` A ) ) ) e. CC /\ ( 1 - ( _i x. ( tan ` A ) ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) = ( 1 - ( _i x. ( tan ` A ) ) ) ) | 
						
							| 72 | 19 20 71 | syl2anc |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) = ( 1 - ( _i x. ( tan ` A ) ) ) ) | 
						
							| 73 | 49 70 72 | 3eqtr4d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` -u ( _i x. A ) ) / ( cos ` A ) ) = ( exp ` ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) | 
						
							| 74 | 46 73 | oveq12d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) / ( cos ` A ) ) / ( ( exp ` -u ( _i x. A ) ) / ( cos ` A ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) ) | 
						
							| 75 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 76 | 7 64 75 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. A ) e. CC ) | 
						
							| 77 |  | efcl |  |-  ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) | 
						
							| 78 | 76 77 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. A ) ) e. CC ) | 
						
							| 79 | 76 | negcld |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( _i x. A ) e. CC ) | 
						
							| 80 |  | efcl |  |-  ( -u ( _i x. A ) e. CC -> ( exp ` -u ( _i x. A ) ) e. CC ) | 
						
							| 81 | 79 80 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` -u ( _i x. A ) ) e. CC ) | 
						
							| 82 |  | efne0 |  |-  ( -u ( _i x. A ) e. CC -> ( exp ` -u ( _i x. A ) ) =/= 0 ) | 
						
							| 83 | 79 82 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` -u ( _i x. A ) ) =/= 0 ) | 
						
							| 84 | 78 81 26 83 1 | divcan7d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) / ( cos ` A ) ) / ( ( exp ` -u ( _i x. A ) ) / ( cos ` A ) ) ) = ( ( exp ` ( _i x. A ) ) / ( exp ` -u ( _i x. A ) ) ) ) | 
						
							| 85 |  | efsub |  |-  ( ( ( _i x. A ) e. CC /\ -u ( _i x. A ) e. CC ) -> ( exp ` ( ( _i x. A ) - -u ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) / ( exp ` -u ( _i x. A ) ) ) ) | 
						
							| 86 | 76 79 85 | syl2anc |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( ( _i x. A ) - -u ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) / ( exp ` -u ( _i x. A ) ) ) ) | 
						
							| 87 | 76 76 | subnegd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. A ) - -u ( _i x. A ) ) = ( ( _i x. A ) + ( _i x. A ) ) ) | 
						
							| 88 | 76 | 2timesd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( _i x. A ) ) = ( ( _i x. A ) + ( _i x. A ) ) ) | 
						
							| 89 | 87 88 | eqtr4d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. A ) - -u ( _i x. A ) ) = ( 2 x. ( _i x. A ) ) ) | 
						
							| 90 | 89 | fveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( ( _i x. A ) - -u ( _i x. A ) ) ) = ( exp ` ( 2 x. ( _i x. A ) ) ) ) | 
						
							| 91 | 84 86 90 | 3eqtr2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) / ( cos ` A ) ) / ( ( exp ` -u ( _i x. A ) ) / ( cos ` A ) ) ) = ( exp ` ( 2 x. ( _i x. A ) ) ) ) | 
						
							| 92 | 24 74 91 | 3eqtr2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) = ( exp ` ( 2 x. ( _i x. A ) ) ) ) | 
						
							| 93 | 92 | fveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) ) = ( log ` ( exp ` ( 2 x. ( _i x. A ) ) ) ) ) | 
						
							| 94 | 64 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> A e. CC ) | 
						
							| 95 | 94 | renegd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` -u A ) = -u ( Re ` A ) ) | 
						
							| 96 | 94 | recld |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` A ) e. RR ) | 
						
							| 97 | 96 | renegcld |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> -u ( Re ` A ) e. RR ) | 
						
							| 98 |  | simpr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` A ) < 0 ) | 
						
							| 99 | 96 | lt0neg1d |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( ( Re ` A ) < 0 <-> 0 < -u ( Re ` A ) ) ) | 
						
							| 100 | 98 99 | mpbid |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> 0 < -u ( Re ` A ) ) | 
						
							| 101 |  | eliooord |  |-  ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) | 
						
							| 102 | 101 | adantl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) | 
						
							| 103 | 102 | simpld |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( _pi / 2 ) < ( Re ` A ) ) | 
						
							| 104 | 103 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> -u ( _pi / 2 ) < ( Re ` A ) ) | 
						
							| 105 |  | halfpire |  |-  ( _pi / 2 ) e. RR | 
						
							| 106 |  | ltnegcon1 |  |-  ( ( ( _pi / 2 ) e. RR /\ ( Re ` A ) e. RR ) -> ( -u ( _pi / 2 ) < ( Re ` A ) <-> -u ( Re ` A ) < ( _pi / 2 ) ) ) | 
						
							| 107 | 105 96 106 | sylancr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( -u ( _pi / 2 ) < ( Re ` A ) <-> -u ( Re ` A ) < ( _pi / 2 ) ) ) | 
						
							| 108 | 104 107 | mpbid |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> -u ( Re ` A ) < ( _pi / 2 ) ) | 
						
							| 109 |  | 0xr |  |-  0 e. RR* | 
						
							| 110 | 105 | rexri |  |-  ( _pi / 2 ) e. RR* | 
						
							| 111 |  | elioo2 |  |-  ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( -u ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( -u ( Re ` A ) e. RR /\ 0 < -u ( Re ` A ) /\ -u ( Re ` A ) < ( _pi / 2 ) ) ) ) | 
						
							| 112 | 109 110 111 | mp2an |  |-  ( -u ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( -u ( Re ` A ) e. RR /\ 0 < -u ( Re ` A ) /\ -u ( Re ` A ) < ( _pi / 2 ) ) ) | 
						
							| 113 | 97 100 108 112 | syl3anbrc |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> -u ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) ) | 
						
							| 114 | 95 113 | eqeltrd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` -u A ) e. ( 0 (,) ( _pi / 2 ) ) ) | 
						
							| 115 |  | tanregt0 |  |-  ( ( -u A e. CC /\ ( Re ` -u A ) e. ( 0 (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( tan ` -u A ) ) ) | 
						
							| 116 | 51 114 115 | syl2an2r |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> 0 < ( Re ` ( tan ` -u A ) ) ) | 
						
							| 117 |  | tanneg |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` -u A ) = -u ( tan ` A ) ) | 
						
							| 118 | 1 117 | syldan |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( tan ` -u A ) = -u ( tan ` A ) ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( tan ` -u A ) = -u ( tan ` A ) ) | 
						
							| 120 | 119 | fveq2d |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` ( tan ` -u A ) ) = ( Re ` -u ( tan ` A ) ) ) | 
						
							| 121 | 9 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( tan ` A ) e. CC ) | 
						
							| 122 | 121 | renegd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` -u ( tan ` A ) ) = -u ( Re ` ( tan ` A ) ) ) | 
						
							| 123 | 120 122 | eqtrd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` ( tan ` -u A ) ) = -u ( Re ` ( tan ` A ) ) ) | 
						
							| 124 | 116 123 | breqtrd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> 0 < -u ( Re ` ( tan ` A ) ) ) | 
						
							| 125 | 9 | recld |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( tan ` A ) ) e. RR ) | 
						
							| 126 | 125 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` ( tan ` A ) ) e. RR ) | 
						
							| 127 | 126 | lt0neg1d |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( ( Re ` ( tan ` A ) ) < 0 <-> 0 < -u ( Re ` ( tan ` A ) ) ) ) | 
						
							| 128 | 124 127 | mpbird |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` ( tan ` A ) ) < 0 ) | 
						
							| 129 | 128 | lt0ne0d |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` ( tan ` A ) ) =/= 0 ) | 
						
							| 130 |  | atanlogsub |  |-  ( ( ( tan ` A ) e. dom arctan /\ ( Re ` ( tan ` A ) ) =/= 0 ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log ) | 
						
							| 131 | 3 129 130 | syl2an2r |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log ) | 
						
							| 132 |  | 1re |  |-  1 e. RR | 
						
							| 133 |  | ioossre |  |-  ( -u 1 (,) 1 ) C_ RR | 
						
							| 134 | 7 | a1i |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> _i e. CC ) | 
						
							| 135 | 11 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. ( tan ` A ) ) e. CC ) | 
						
							| 136 |  | ine0 |  |-  _i =/= 0 | 
						
							| 137 | 136 | a1i |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> _i =/= 0 ) | 
						
							| 138 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 139 | 138 | oveq1i |  |-  ( ( _i x. _i ) x. ( tan ` A ) ) = ( -u 1 x. ( tan ` A ) ) | 
						
							| 140 | 9 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( tan ` A ) e. CC ) | 
						
							| 141 | 140 | mulm1d |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( -u 1 x. ( tan ` A ) ) = -u ( tan ` A ) ) | 
						
							| 142 | 118 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( tan ` -u A ) = -u ( tan ` A ) ) | 
						
							| 143 | 141 142 | eqtr4d |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( -u 1 x. ( tan ` A ) ) = ( tan ` -u A ) ) | 
						
							| 144 | 139 143 | eqtrid |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. _i ) x. ( tan ` A ) ) = ( tan ` -u A ) ) | 
						
							| 145 | 134 134 140 | mulassd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. _i ) x. ( tan ` A ) ) = ( _i x. ( _i x. ( tan ` A ) ) ) ) | 
						
							| 146 | 138 | oveq1i |  |-  ( ( _i x. _i ) x. A ) = ( -u 1 x. A ) | 
						
							| 147 | 64 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> A e. CC ) | 
						
							| 148 | 147 | mulm1d |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( -u 1 x. A ) = -u A ) | 
						
							| 149 | 146 148 | eqtrid |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. _i ) x. A ) = -u A ) | 
						
							| 150 | 134 134 147 | mulassd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) | 
						
							| 151 | 149 150 | eqtr3d |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> -u A = ( _i x. ( _i x. A ) ) ) | 
						
							| 152 | 151 | fveq2d |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( tan ` -u A ) = ( tan ` ( _i x. ( _i x. A ) ) ) ) | 
						
							| 153 | 144 145 152 | 3eqtr3d |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. ( _i x. ( tan ` A ) ) ) = ( tan ` ( _i x. ( _i x. A ) ) ) ) | 
						
							| 154 | 134 135 137 153 | mvllmuld |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. ( tan ` A ) ) = ( ( tan ` ( _i x. ( _i x. A ) ) ) / _i ) ) | 
						
							| 155 | 76 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. A ) e. CC ) | 
						
							| 156 |  | reim |  |-  ( A e. CC -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) | 
						
							| 157 | 156 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) | 
						
							| 158 | 157 | eqeq1d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( Re ` A ) = 0 <-> ( Im ` ( _i x. A ) ) = 0 ) ) | 
						
							| 159 | 158 | biimpa |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( Im ` ( _i x. A ) ) = 0 ) | 
						
							| 160 | 155 159 | reim0bd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. A ) e. RR ) | 
						
							| 161 |  | tanhbnd |  |-  ( ( _i x. A ) e. RR -> ( ( tan ` ( _i x. ( _i x. A ) ) ) / _i ) e. ( -u 1 (,) 1 ) ) | 
						
							| 162 | 160 161 | syl |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( tan ` ( _i x. ( _i x. A ) ) ) / _i ) e. ( -u 1 (,) 1 ) ) | 
						
							| 163 | 154 162 | eqeltrd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. ( tan ` A ) ) e. ( -u 1 (,) 1 ) ) | 
						
							| 164 | 133 163 | sselid |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. ( tan ` A ) ) e. RR ) | 
						
							| 165 |  | readdcl |  |-  ( ( 1 e. RR /\ ( _i x. ( tan ` A ) ) e. RR ) -> ( 1 + ( _i x. ( tan ` A ) ) ) e. RR ) | 
						
							| 166 | 132 164 165 | sylancr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( 1 + ( _i x. ( tan ` A ) ) ) e. RR ) | 
						
							| 167 |  | df-neg |  |-  -u 1 = ( 0 - 1 ) | 
						
							| 168 |  | eliooord |  |-  ( ( _i x. ( tan ` A ) ) e. ( -u 1 (,) 1 ) -> ( -u 1 < ( _i x. ( tan ` A ) ) /\ ( _i x. ( tan ` A ) ) < 1 ) ) | 
						
							| 169 | 163 168 | syl |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( -u 1 < ( _i x. ( tan ` A ) ) /\ ( _i x. ( tan ` A ) ) < 1 ) ) | 
						
							| 170 | 169 | simpld |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> -u 1 < ( _i x. ( tan ` A ) ) ) | 
						
							| 171 | 167 170 | eqbrtrrid |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( 0 - 1 ) < ( _i x. ( tan ` A ) ) ) | 
						
							| 172 |  | 0red |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> 0 e. RR ) | 
						
							| 173 | 132 | a1i |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> 1 e. RR ) | 
						
							| 174 | 172 173 164 | ltsubadd2d |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( 0 - 1 ) < ( _i x. ( tan ` A ) ) <-> 0 < ( 1 + ( _i x. ( tan ` A ) ) ) ) ) | 
						
							| 175 | 171 174 | mpbid |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> 0 < ( 1 + ( _i x. ( tan ` A ) ) ) ) | 
						
							| 176 | 166 175 | elrpd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( 1 + ( _i x. ( tan ` A ) ) ) e. RR+ ) | 
						
							| 177 | 176 | relogcld |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) e. RR ) | 
						
							| 178 | 169 | simprd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. ( tan ` A ) ) < 1 ) | 
						
							| 179 |  | difrp |  |-  ( ( ( _i x. ( tan ` A ) ) e. RR /\ 1 e. RR ) -> ( ( _i x. ( tan ` A ) ) < 1 <-> ( 1 - ( _i x. ( tan ` A ) ) ) e. RR+ ) ) | 
						
							| 180 | 164 132 179 | sylancl |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. ( tan ` A ) ) < 1 <-> ( 1 - ( _i x. ( tan ` A ) ) ) e. RR+ ) ) | 
						
							| 181 | 178 180 | mpbid |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( 1 - ( _i x. ( tan ` A ) ) ) e. RR+ ) | 
						
							| 182 | 181 | relogcld |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) e. RR ) | 
						
							| 183 | 177 182 | resubcld |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. RR ) | 
						
							| 184 |  | relogrn |  |-  ( ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. RR -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log ) | 
						
							| 185 | 183 184 | syl |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log ) | 
						
							| 186 | 64 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> A e. CC ) | 
						
							| 187 | 186 | recld |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> ( Re ` A ) e. RR ) | 
						
							| 188 |  | simpr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> 0 < ( Re ` A ) ) | 
						
							| 189 | 102 | simprd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) < ( _pi / 2 ) ) | 
						
							| 190 | 189 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> ( Re ` A ) < ( _pi / 2 ) ) | 
						
							| 191 |  | elioo2 |  |-  ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( Re ` A ) e. RR /\ 0 < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) ) | 
						
							| 192 | 109 110 191 | mp2an |  |-  ( ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( Re ` A ) e. RR /\ 0 < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) | 
						
							| 193 | 187 188 190 192 | syl3anbrc |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) ) | 
						
							| 194 |  | tanregt0 |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( tan ` A ) ) ) | 
						
							| 195 | 64 193 194 | syl2an2r |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> 0 < ( Re ` ( tan ` A ) ) ) | 
						
							| 196 | 195 | gt0ne0d |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> ( Re ` ( tan ` A ) ) =/= 0 ) | 
						
							| 197 | 3 196 130 | syl2an2r |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log ) | 
						
							| 198 |  | recl |  |-  ( A e. CC -> ( Re ` A ) e. RR ) | 
						
							| 199 | 198 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) e. RR ) | 
						
							| 200 |  | 0re |  |-  0 e. RR | 
						
							| 201 |  | lttri4 |  |-  ( ( ( Re ` A ) e. RR /\ 0 e. RR ) -> ( ( Re ` A ) < 0 \/ ( Re ` A ) = 0 \/ 0 < ( Re ` A ) ) ) | 
						
							| 202 | 199 200 201 | sylancl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( Re ` A ) < 0 \/ ( Re ` A ) = 0 \/ 0 < ( Re ` A ) ) ) | 
						
							| 203 | 131 185 197 202 | mpjao3dan |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log ) | 
						
							| 204 |  | logef |  |-  ( ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) | 
						
							| 205 | 203 204 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) | 
						
							| 206 |  | 2cn |  |-  2 e. CC | 
						
							| 207 |  | mulcl |  |-  ( ( 2 e. CC /\ ( _i x. A ) e. CC ) -> ( 2 x. ( _i x. A ) ) e. CC ) | 
						
							| 208 | 206 76 207 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( _i x. A ) ) e. CC ) | 
						
							| 209 |  | picn |  |-  _pi e. CC | 
						
							| 210 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 211 |  | divneg |  |-  ( ( _pi e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _pi / 2 ) = ( -u _pi / 2 ) ) | 
						
							| 212 | 209 206 210 211 | mp3an |  |-  -u ( _pi / 2 ) = ( -u _pi / 2 ) | 
						
							| 213 | 212 103 | eqbrtrrid |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u _pi / 2 ) < ( Re ` A ) ) | 
						
							| 214 |  | pire |  |-  _pi e. RR | 
						
							| 215 | 214 | renegcli |  |-  -u _pi e. RR | 
						
							| 216 | 215 | a1i |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi e. RR ) | 
						
							| 217 |  | 2re |  |-  2 e. RR | 
						
							| 218 | 217 | a1i |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 2 e. RR ) | 
						
							| 219 |  | 2pos |  |-  0 < 2 | 
						
							| 220 | 219 | a1i |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < 2 ) | 
						
							| 221 |  | ltdivmul |  |-  ( ( -u _pi e. RR /\ ( Re ` A ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( -u _pi / 2 ) < ( Re ` A ) <-> -u _pi < ( 2 x. ( Re ` A ) ) ) ) | 
						
							| 222 | 216 199 218 220 221 | syl112anc |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( -u _pi / 2 ) < ( Re ` A ) <-> -u _pi < ( 2 x. ( Re ` A ) ) ) ) | 
						
							| 223 | 213 222 | mpbid |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi < ( 2 x. ( Re ` A ) ) ) | 
						
							| 224 |  | immul2 |  |-  ( ( 2 e. RR /\ ( _i x. A ) e. CC ) -> ( Im ` ( 2 x. ( _i x. A ) ) ) = ( 2 x. ( Im ` ( _i x. A ) ) ) ) | 
						
							| 225 | 217 76 224 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( 2 x. ( _i x. A ) ) ) = ( 2 x. ( Im ` ( _i x. A ) ) ) ) | 
						
							| 226 | 157 | oveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( Re ` A ) ) = ( 2 x. ( Im ` ( _i x. A ) ) ) ) | 
						
							| 227 | 225 226 | eqtr4d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( 2 x. ( _i x. A ) ) ) = ( 2 x. ( Re ` A ) ) ) | 
						
							| 228 | 223 227 | breqtrrd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi < ( Im ` ( 2 x. ( _i x. A ) ) ) ) | 
						
							| 229 |  | remulcl |  |-  ( ( 2 e. RR /\ ( Re ` A ) e. RR ) -> ( 2 x. ( Re ` A ) ) e. RR ) | 
						
							| 230 | 217 199 229 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( Re ` A ) ) e. RR ) | 
						
							| 231 | 214 | a1i |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _pi e. RR ) | 
						
							| 232 |  | ltmuldiv2 |  |-  ( ( ( Re ` A ) e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. ( Re ` A ) ) < _pi <-> ( Re ` A ) < ( _pi / 2 ) ) ) | 
						
							| 233 | 199 231 218 220 232 | syl112anc |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( 2 x. ( Re ` A ) ) < _pi <-> ( Re ` A ) < ( _pi / 2 ) ) ) | 
						
							| 234 | 189 233 | mpbird |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( Re ` A ) ) < _pi ) | 
						
							| 235 | 230 231 234 | ltled |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( Re ` A ) ) <_ _pi ) | 
						
							| 236 | 227 235 | eqbrtrd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( 2 x. ( _i x. A ) ) ) <_ _pi ) | 
						
							| 237 |  | ellogrn |  |-  ( ( 2 x. ( _i x. A ) ) e. ran log <-> ( ( 2 x. ( _i x. A ) ) e. CC /\ -u _pi < ( Im ` ( 2 x. ( _i x. A ) ) ) /\ ( Im ` ( 2 x. ( _i x. A ) ) ) <_ _pi ) ) | 
						
							| 238 | 208 228 236 237 | syl3anbrc |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( _i x. A ) ) e. ran log ) | 
						
							| 239 |  | logef |  |-  ( ( 2 x. ( _i x. A ) ) e. ran log -> ( log ` ( exp ` ( 2 x. ( _i x. A ) ) ) ) = ( 2 x. ( _i x. A ) ) ) | 
						
							| 240 | 238 239 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( exp ` ( 2 x. ( _i x. A ) ) ) ) = ( 2 x. ( _i x. A ) ) ) | 
						
							| 241 | 93 205 240 | 3eqtr3d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) = ( 2 x. ( _i x. A ) ) ) | 
						
							| 242 | 241 | negeqd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) = -u ( 2 x. ( _i x. A ) ) ) | 
						
							| 243 | 22 242 | eqtr3d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) = -u ( 2 x. ( _i x. A ) ) ) | 
						
							| 244 | 243 | oveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( 2 x. ( _i x. A ) ) ) ) | 
						
							| 245 |  | halfcl |  |-  ( _i e. CC -> ( _i / 2 ) e. CC ) | 
						
							| 246 | 7 245 | mp1i |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i / 2 ) e. CC ) | 
						
							| 247 | 206 | a1i |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 2 e. CC ) | 
						
							| 248 | 246 247 79 | mulassd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( _i / 2 ) x. 2 ) x. -u ( _i x. A ) ) = ( ( _i / 2 ) x. ( 2 x. -u ( _i x. A ) ) ) ) | 
						
							| 249 | 7 206 210 | divcan1i |  |-  ( ( _i / 2 ) x. 2 ) = _i | 
						
							| 250 | 249 | oveq1i |  |-  ( ( ( _i / 2 ) x. 2 ) x. -u ( _i x. A ) ) = ( _i x. -u ( _i x. A ) ) | 
						
							| 251 | 33 33 51 | mulassd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. _i ) x. -u A ) = ( _i x. ( _i x. -u A ) ) ) | 
						
							| 252 | 138 | oveq1i |  |-  ( ( _i x. _i ) x. -u A ) = ( -u 1 x. -u A ) | 
						
							| 253 |  | mul2neg |  |-  ( ( 1 e. CC /\ A e. CC ) -> ( -u 1 x. -u A ) = ( 1 x. A ) ) | 
						
							| 254 | 6 64 253 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u 1 x. -u A ) = ( 1 x. A ) ) | 
						
							| 255 |  | mullid |  |-  ( A e. CC -> ( 1 x. A ) = A ) | 
						
							| 256 | 255 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 x. A ) = A ) | 
						
							| 257 | 254 256 | eqtrd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u 1 x. -u A ) = A ) | 
						
							| 258 | 252 257 | eqtrid |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. _i ) x. -u A ) = A ) | 
						
							| 259 | 66 | oveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( _i x. -u A ) ) = ( _i x. -u ( _i x. A ) ) ) | 
						
							| 260 | 251 258 259 | 3eqtr3rd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. -u ( _i x. A ) ) = A ) | 
						
							| 261 | 250 260 | eqtrid |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( _i / 2 ) x. 2 ) x. -u ( _i x. A ) ) = A ) | 
						
							| 262 |  | mulneg2 |  |-  ( ( 2 e. CC /\ ( _i x. A ) e. CC ) -> ( 2 x. -u ( _i x. A ) ) = -u ( 2 x. ( _i x. A ) ) ) | 
						
							| 263 | 206 76 262 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. -u ( _i x. A ) ) = -u ( 2 x. ( _i x. A ) ) ) | 
						
							| 264 | 263 | oveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i / 2 ) x. ( 2 x. -u ( _i x. A ) ) ) = ( ( _i / 2 ) x. -u ( 2 x. ( _i x. A ) ) ) ) | 
						
							| 265 | 248 261 264 | 3eqtr3rd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i / 2 ) x. -u ( 2 x. ( _i x. A ) ) ) = A ) | 
						
							| 266 | 5 244 265 | 3eqtrd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arctan ` ( tan ` A ) ) = A ) |