| Step | Hyp | Ref | Expression | 
						
							| 1 |  | retanhcl |  |-  ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) e. RR ) | 
						
							| 2 |  | ax-icn |  |-  _i e. CC | 
						
							| 3 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 4 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 5 | 2 3 4 | sylancr |  |-  ( A e. RR -> ( _i x. A ) e. CC ) | 
						
							| 6 |  | rpcoshcl |  |-  ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR+ ) | 
						
							| 7 | 6 | rpne0d |  |-  ( A e. RR -> ( cos ` ( _i x. A ) ) =/= 0 ) | 
						
							| 8 | 5 7 | tancld |  |-  ( A e. RR -> ( tan ` ( _i x. A ) ) e. CC ) | 
						
							| 9 | 2 | a1i |  |-  ( A e. RR -> _i e. CC ) | 
						
							| 10 |  | ine0 |  |-  _i =/= 0 | 
						
							| 11 | 10 | a1i |  |-  ( A e. RR -> _i =/= 0 ) | 
						
							| 12 | 8 9 11 | divnegd |  |-  ( A e. RR -> -u ( ( tan ` ( _i x. A ) ) / _i ) = ( -u ( tan ` ( _i x. A ) ) / _i ) ) | 
						
							| 13 |  | mulneg2 |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 14 | 2 3 13 | sylancr |  |-  ( A e. RR -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 15 | 14 | fveq2d |  |-  ( A e. RR -> ( tan ` ( _i x. -u A ) ) = ( tan ` -u ( _i x. A ) ) ) | 
						
							| 16 |  | tanneg |  |-  ( ( ( _i x. A ) e. CC /\ ( cos ` ( _i x. A ) ) =/= 0 ) -> ( tan ` -u ( _i x. A ) ) = -u ( tan ` ( _i x. A ) ) ) | 
						
							| 17 | 5 7 16 | syl2anc |  |-  ( A e. RR -> ( tan ` -u ( _i x. A ) ) = -u ( tan ` ( _i x. A ) ) ) | 
						
							| 18 | 15 17 | eqtrd |  |-  ( A e. RR -> ( tan ` ( _i x. -u A ) ) = -u ( tan ` ( _i x. A ) ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( A e. RR -> ( ( tan ` ( _i x. -u A ) ) / _i ) = ( -u ( tan ` ( _i x. A ) ) / _i ) ) | 
						
							| 20 | 12 19 | eqtr4d |  |-  ( A e. RR -> -u ( ( tan ` ( _i x. A ) ) / _i ) = ( ( tan ` ( _i x. -u A ) ) / _i ) ) | 
						
							| 21 |  | renegcl |  |-  ( A e. RR -> -u A e. RR ) | 
						
							| 22 |  | tanhlt1 |  |-  ( -u A e. RR -> ( ( tan ` ( _i x. -u A ) ) / _i ) < 1 ) | 
						
							| 23 | 21 22 | syl |  |-  ( A e. RR -> ( ( tan ` ( _i x. -u A ) ) / _i ) < 1 ) | 
						
							| 24 | 20 23 | eqbrtrd |  |-  ( A e. RR -> -u ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) | 
						
							| 25 |  | 1re |  |-  1 e. RR | 
						
							| 26 |  | ltnegcon1 |  |-  ( ( ( ( tan ` ( _i x. A ) ) / _i ) e. RR /\ 1 e. RR ) -> ( -u ( ( tan ` ( _i x. A ) ) / _i ) < 1 <-> -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) ) ) | 
						
							| 27 | 1 25 26 | sylancl |  |-  ( A e. RR -> ( -u ( ( tan ` ( _i x. A ) ) / _i ) < 1 <-> -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) ) ) | 
						
							| 28 | 24 27 | mpbid |  |-  ( A e. RR -> -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) ) | 
						
							| 29 |  | tanhlt1 |  |-  ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) | 
						
							| 30 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 31 | 30 | rexri |  |-  -u 1 e. RR* | 
						
							| 32 | 25 | rexri |  |-  1 e. RR* | 
						
							| 33 |  | elioo2 |  |-  ( ( -u 1 e. RR* /\ 1 e. RR* ) -> ( ( ( tan ` ( _i x. A ) ) / _i ) e. ( -u 1 (,) 1 ) <-> ( ( ( tan ` ( _i x. A ) ) / _i ) e. RR /\ -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) /\ ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) ) ) | 
						
							| 34 | 31 32 33 | mp2an |  |-  ( ( ( tan ` ( _i x. A ) ) / _i ) e. ( -u 1 (,) 1 ) <-> ( ( ( tan ` ( _i x. A ) ) / _i ) e. RR /\ -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) /\ ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) ) | 
						
							| 35 | 1 28 29 34 | syl3anbrc |  |-  ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) e. ( -u 1 (,) 1 ) ) |