| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn |  |-  _i e. CC | 
						
							| 2 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 3 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 4 | 1 2 3 | sylancr |  |-  ( A e. RR -> ( _i x. A ) e. CC ) | 
						
							| 5 |  | rpcoshcl |  |-  ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR+ ) | 
						
							| 6 | 5 | rpne0d |  |-  ( A e. RR -> ( cos ` ( _i x. A ) ) =/= 0 ) | 
						
							| 7 |  | tanval |  |-  ( ( ( _i x. A ) e. CC /\ ( cos ` ( _i x. A ) ) =/= 0 ) -> ( tan ` ( _i x. A ) ) = ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) ) | 
						
							| 8 | 4 6 7 | syl2anc |  |-  ( A e. RR -> ( tan ` ( _i x. A ) ) = ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) / _i ) ) | 
						
							| 10 | 4 | sincld |  |-  ( A e. RR -> ( sin ` ( _i x. A ) ) e. CC ) | 
						
							| 11 |  | recoshcl |  |-  ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( A e. RR -> ( cos ` ( _i x. A ) ) e. CC ) | 
						
							| 13 | 1 | a1i |  |-  ( A e. RR -> _i e. CC ) | 
						
							| 14 |  | ine0 |  |-  _i =/= 0 | 
						
							| 15 | 14 | a1i |  |-  ( A e. RR -> _i =/= 0 ) | 
						
							| 16 | 10 12 13 6 15 | divdiv32d |  |-  ( A e. RR -> ( ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) ) | 
						
							| 17 |  | sinhval |  |-  ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) | 
						
							| 18 | 2 17 | syl |  |-  ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) | 
						
							| 19 |  | coshval |  |-  ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) | 
						
							| 20 | 2 19 | syl |  |-  ( A e. RR -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) | 
						
							| 21 | 18 20 | oveq12d |  |-  ( A e. RR -> ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) / ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) | 
						
							| 22 | 9 16 21 | 3eqtrd |  |-  ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) / ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) | 
						
							| 23 |  | reefcl |  |-  ( A e. RR -> ( exp ` A ) e. RR ) | 
						
							| 24 |  | renegcl |  |-  ( A e. RR -> -u A e. RR ) | 
						
							| 25 | 24 | reefcld |  |-  ( A e. RR -> ( exp ` -u A ) e. RR ) | 
						
							| 26 | 23 25 | resubcld |  |-  ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) e. RR ) | 
						
							| 27 | 26 | recnd |  |-  ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) e. CC ) | 
						
							| 28 | 23 25 | readdcld |  |-  ( A e. RR -> ( ( exp ` A ) + ( exp ` -u A ) ) e. RR ) | 
						
							| 29 | 28 | recnd |  |-  ( A e. RR -> ( ( exp ` A ) + ( exp ` -u A ) ) e. CC ) | 
						
							| 30 |  | 2cnd |  |-  ( A e. RR -> 2 e. CC ) | 
						
							| 31 | 20 6 | eqnetrrd |  |-  ( A e. RR -> ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) =/= 0 ) | 
						
							| 32 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 33 | 32 | a1i |  |-  ( A e. RR -> 2 =/= 0 ) | 
						
							| 34 | 29 30 33 | divne0bd |  |-  ( A e. RR -> ( ( ( exp ` A ) + ( exp ` -u A ) ) =/= 0 <-> ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) =/= 0 ) ) | 
						
							| 35 | 31 34 | mpbird |  |-  ( A e. RR -> ( ( exp ` A ) + ( exp ` -u A ) ) =/= 0 ) | 
						
							| 36 | 27 29 30 35 33 | divcan7d |  |-  ( A e. RR -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) / ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) ) | 
						
							| 37 | 22 36 | eqtrd |  |-  ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) ) | 
						
							| 38 | 24 | rpefcld |  |-  ( A e. RR -> ( exp ` -u A ) e. RR+ ) | 
						
							| 39 | 23 38 | ltsubrpd |  |-  ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) < ( exp ` A ) ) | 
						
							| 40 | 23 38 | ltaddrpd |  |-  ( A e. RR -> ( exp ` A ) < ( ( exp ` A ) + ( exp ` -u A ) ) ) | 
						
							| 41 | 26 23 28 39 40 | lttrd |  |-  ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) < ( ( exp ` A ) + ( exp ` -u A ) ) ) | 
						
							| 42 | 29 | mulridd |  |-  ( A e. RR -> ( ( ( exp ` A ) + ( exp ` -u A ) ) x. 1 ) = ( ( exp ` A ) + ( exp ` -u A ) ) ) | 
						
							| 43 | 41 42 | breqtrrd |  |-  ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) < ( ( ( exp ` A ) + ( exp ` -u A ) ) x. 1 ) ) | 
						
							| 44 |  | 1red |  |-  ( A e. RR -> 1 e. RR ) | 
						
							| 45 |  | efgt0 |  |-  ( A e. RR -> 0 < ( exp ` A ) ) | 
						
							| 46 |  | efgt0 |  |-  ( -u A e. RR -> 0 < ( exp ` -u A ) ) | 
						
							| 47 | 24 46 | syl |  |-  ( A e. RR -> 0 < ( exp ` -u A ) ) | 
						
							| 48 | 23 25 45 47 | addgt0d |  |-  ( A e. RR -> 0 < ( ( exp ` A ) + ( exp ` -u A ) ) ) | 
						
							| 49 |  | ltdivmul |  |-  ( ( ( ( exp ` A ) - ( exp ` -u A ) ) e. RR /\ 1 e. RR /\ ( ( ( exp ` A ) + ( exp ` -u A ) ) e. RR /\ 0 < ( ( exp ` A ) + ( exp ` -u A ) ) ) ) -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) < 1 <-> ( ( exp ` A ) - ( exp ` -u A ) ) < ( ( ( exp ` A ) + ( exp ` -u A ) ) x. 1 ) ) ) | 
						
							| 50 | 26 44 28 48 49 | syl112anc |  |-  ( A e. RR -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) < 1 <-> ( ( exp ` A ) - ( exp ` -u A ) ) < ( ( ( exp ` A ) + ( exp ` -u A ) ) x. 1 ) ) ) | 
						
							| 51 | 43 50 | mpbird |  |-  ( A e. RR -> ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) < 1 ) | 
						
							| 52 | 37 51 | eqbrtrd |  |-  ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) |