| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 3 |
1 2
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
| 4 |
|
cosval |
|- ( ( _i x. A ) e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / 2 ) ) |
| 5 |
3 4
|
syl |
|- ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / 2 ) ) |
| 6 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
| 7 |
|
efcl |
|- ( -u A e. CC -> ( exp ` -u A ) e. CC ) |
| 8 |
6 7
|
syl |
|- ( A e. CC -> ( exp ` -u A ) e. CC ) |
| 9 |
|
efcl |
|- ( A e. CC -> ( exp ` A ) e. CC ) |
| 10 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 11 |
10
|
oveq1i |
|- ( ( _i x. _i ) x. A ) = ( -u 1 x. A ) |
| 12 |
|
mulass |
|- ( ( _i e. CC /\ _i e. CC /\ A e. CC ) -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) |
| 13 |
1 1 12
|
mp3an12 |
|- ( A e. CC -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) |
| 14 |
|
mulm1 |
|- ( A e. CC -> ( -u 1 x. A ) = -u A ) |
| 15 |
11 13 14
|
3eqtr3a |
|- ( A e. CC -> ( _i x. ( _i x. A ) ) = -u A ) |
| 16 |
15
|
fveq2d |
|- ( A e. CC -> ( exp ` ( _i x. ( _i x. A ) ) ) = ( exp ` -u A ) ) |
| 17 |
1 1
|
mulneg1i |
|- ( -u _i x. _i ) = -u ( _i x. _i ) |
| 18 |
10
|
negeqi |
|- -u ( _i x. _i ) = -u -u 1 |
| 19 |
|
negneg1e1 |
|- -u -u 1 = 1 |
| 20 |
17 18 19
|
3eqtri |
|- ( -u _i x. _i ) = 1 |
| 21 |
20
|
oveq1i |
|- ( ( -u _i x. _i ) x. A ) = ( 1 x. A ) |
| 22 |
|
negicn |
|- -u _i e. CC |
| 23 |
|
mulass |
|- ( ( -u _i e. CC /\ _i e. CC /\ A e. CC ) -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) ) |
| 24 |
22 1 23
|
mp3an12 |
|- ( A e. CC -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) ) |
| 25 |
|
mullid |
|- ( A e. CC -> ( 1 x. A ) = A ) |
| 26 |
21 24 25
|
3eqtr3a |
|- ( A e. CC -> ( -u _i x. ( _i x. A ) ) = A ) |
| 27 |
26
|
fveq2d |
|- ( A e. CC -> ( exp ` ( -u _i x. ( _i x. A ) ) ) = ( exp ` A ) ) |
| 28 |
16 27
|
oveq12d |
|- ( A e. CC -> ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) = ( ( exp ` -u A ) + ( exp ` A ) ) ) |
| 29 |
8 9 28
|
comraddd |
|- ( A e. CC -> ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) = ( ( exp ` A ) + ( exp ` -u A ) ) ) |
| 30 |
29
|
oveq1d |
|- ( A e. CC -> ( ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / 2 ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) |
| 31 |
5 30
|
eqtrd |
|- ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) |