| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 2 |
|
sinhval |
|- ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
| 3 |
1 2
|
syl |
|- ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
| 4 |
|
reefcl |
|- ( A e. RR -> ( exp ` A ) e. RR ) |
| 5 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 6 |
5
|
reefcld |
|- ( A e. RR -> ( exp ` -u A ) e. RR ) |
| 7 |
4 6
|
resubcld |
|- ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) e. RR ) |
| 8 |
7
|
rehalfcld |
|- ( A e. RR -> ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) e. RR ) |
| 9 |
3 8
|
eqeltrd |
|- ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) e. RR ) |