| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 2 |
|
sinhval |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 4 |
|
reefcl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 6 |
5
|
reefcld |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ - 𝐴 ) ∈ ℝ ) |
| 7 |
4 6
|
resubcld |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) ∈ ℝ ) |
| 8 |
7
|
rehalfcld |
⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ∈ ℝ ) |
| 9 |
3 8
|
eqeltrd |
⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ) |