| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 2 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 4 | 1 2 3 | sylancr | ⊢ ( 𝐴  ∈  ℝ  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 5 |  | rpcoshcl | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  ∈  ℝ+ ) | 
						
							| 6 | 5 | rpne0d | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  ≠  0 ) | 
						
							| 7 |  | tanval | ⊢ ( ( ( i  ·  𝐴 )  ∈  ℂ  ∧  ( cos ‘ ( i  ·  𝐴 ) )  ≠  0 )  →  ( tan ‘ ( i  ·  𝐴 ) )  =  ( ( sin ‘ ( i  ·  𝐴 ) )  /  ( cos ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 8 | 4 6 7 | syl2anc | ⊢ ( 𝐴  ∈  ℝ  →  ( tan ‘ ( i  ·  𝐴 ) )  =  ( ( sin ‘ ( i  ·  𝐴 ) )  /  ( cos ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( ( sin ‘ ( i  ·  𝐴 ) )  /  ( cos ‘ ( i  ·  𝐴 ) ) )  /  i ) ) | 
						
							| 10 | 4 | sincld | ⊢ ( 𝐴  ∈  ℝ  →  ( sin ‘ ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 11 |  | recoshcl | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 13 | 1 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  i  ∈  ℂ ) | 
						
							| 14 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 15 | 14 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  i  ≠  0 ) | 
						
							| 16 | 10 12 13 6 15 | divdiv32d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( sin ‘ ( i  ·  𝐴 ) )  /  ( cos ‘ ( i  ·  𝐴 ) ) )  /  i )  =  ( ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  /  ( cos ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 17 |  | sinhval | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 18 | 2 17 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 19 |  | coshval | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( i  ·  𝐴 ) )  =  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 20 | 2 19 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  =  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 21 | 18 20 | oveq12d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  /  ( cos ‘ ( i  ·  𝐴 ) ) )  =  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  /  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) ) | 
						
							| 22 | 9 16 21 | 3eqtrd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  /  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) ) | 
						
							| 23 |  | reefcl | ⊢ ( 𝐴  ∈  ℝ  →  ( exp ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 24 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 25 | 24 | reefcld | ⊢ ( 𝐴  ∈  ℝ  →  ( exp ‘ - 𝐴 )  ∈  ℝ ) | 
						
							| 26 | 23 25 | resubcld | ⊢ ( 𝐴  ∈  ℝ  →  ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  ∈  ℝ ) | 
						
							| 27 | 26 | recnd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  ∈  ℂ ) | 
						
							| 28 | 23 25 | readdcld | ⊢ ( 𝐴  ∈  ℝ  →  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ∈  ℝ ) | 
						
							| 29 | 28 | recnd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ∈  ℂ ) | 
						
							| 30 |  | 2cnd | ⊢ ( 𝐴  ∈  ℝ  →  2  ∈  ℂ ) | 
						
							| 31 | 20 6 | eqnetrrd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 )  ≠  0 ) | 
						
							| 32 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 33 | 32 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  2  ≠  0 ) | 
						
							| 34 | 29 30 33 | divne0bd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ≠  0  ↔  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 )  ≠  0 ) ) | 
						
							| 35 | 31 34 | mpbird | ⊢ ( 𝐴  ∈  ℝ  →  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ≠  0 ) | 
						
							| 36 | 27 29 30 35 33 | divcan7d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  /  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) )  =  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) ) ) | 
						
							| 37 | 22 36 | eqtrd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) ) ) | 
						
							| 38 | 24 | rpefcld | ⊢ ( 𝐴  ∈  ℝ  →  ( exp ‘ - 𝐴 )  ∈  ℝ+ ) | 
						
							| 39 | 23 38 | ltsubrpd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  <  ( exp ‘ 𝐴 ) ) | 
						
							| 40 | 23 38 | ltaddrpd | ⊢ ( 𝐴  ∈  ℝ  →  ( exp ‘ 𝐴 )  <  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) ) | 
						
							| 41 | 26 23 28 39 40 | lttrd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  <  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) ) | 
						
							| 42 | 29 | mulridd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ·  1 )  =  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) ) | 
						
							| 43 | 41 42 | breqtrrd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  <  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ·  1 ) ) | 
						
							| 44 |  | 1red | ⊢ ( 𝐴  ∈  ℝ  →  1  ∈  ℝ ) | 
						
							| 45 |  | efgt0 | ⊢ ( 𝐴  ∈  ℝ  →  0  <  ( exp ‘ 𝐴 ) ) | 
						
							| 46 |  | efgt0 | ⊢ ( - 𝐴  ∈  ℝ  →  0  <  ( exp ‘ - 𝐴 ) ) | 
						
							| 47 | 24 46 | syl | ⊢ ( 𝐴  ∈  ℝ  →  0  <  ( exp ‘ - 𝐴 ) ) | 
						
							| 48 | 23 25 45 47 | addgt0d | ⊢ ( 𝐴  ∈  ℝ  →  0  <  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) ) | 
						
							| 49 |  | ltdivmul | ⊢ ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ∈  ℝ  ∧  0  <  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) ) )  →  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) )  <  1  ↔  ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  <  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ·  1 ) ) ) | 
						
							| 50 | 26 44 28 48 49 | syl112anc | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) )  <  1  ↔  ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  <  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ·  1 ) ) ) | 
						
							| 51 | 43 50 | mpbird | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) )  <  1 ) | 
						
							| 52 | 37 51 | eqbrtrd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  <  1 ) |