| Step | Hyp | Ref | Expression | 
						
							| 1 |  | retanhcl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  ∈  ℝ ) | 
						
							| 2 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 3 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 5 | 2 3 4 | sylancr | ⊢ ( 𝐴  ∈  ℝ  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 6 |  | rpcoshcl | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  ∈  ℝ+ ) | 
						
							| 7 | 6 | rpne0d | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  ≠  0 ) | 
						
							| 8 | 5 7 | tancld | ⊢ ( 𝐴  ∈  ℝ  →  ( tan ‘ ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 9 | 2 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  i  ∈  ℂ ) | 
						
							| 10 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  i  ≠  0 ) | 
						
							| 12 | 8 9 11 | divnegd | ⊢ ( 𝐴  ∈  ℝ  →  - ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  =  ( - ( tan ‘ ( i  ·  𝐴 ) )  /  i ) ) | 
						
							| 13 |  | mulneg2 | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  - 𝐴 )  =  - ( i  ·  𝐴 ) ) | 
						
							| 14 | 2 3 13 | sylancr | ⊢ ( 𝐴  ∈  ℝ  →  ( i  ·  - 𝐴 )  =  - ( i  ·  𝐴 ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝐴  ∈  ℝ  →  ( tan ‘ ( i  ·  - 𝐴 ) )  =  ( tan ‘ - ( i  ·  𝐴 ) ) ) | 
						
							| 16 |  | tanneg | ⊢ ( ( ( i  ·  𝐴 )  ∈  ℂ  ∧  ( cos ‘ ( i  ·  𝐴 ) )  ≠  0 )  →  ( tan ‘ - ( i  ·  𝐴 ) )  =  - ( tan ‘ ( i  ·  𝐴 ) ) ) | 
						
							| 17 | 5 7 16 | syl2anc | ⊢ ( 𝐴  ∈  ℝ  →  ( tan ‘ - ( i  ·  𝐴 ) )  =  - ( tan ‘ ( i  ·  𝐴 ) ) ) | 
						
							| 18 | 15 17 | eqtrd | ⊢ ( 𝐴  ∈  ℝ  →  ( tan ‘ ( i  ·  - 𝐴 ) )  =  - ( tan ‘ ( i  ·  𝐴 ) ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  - 𝐴 ) )  /  i )  =  ( - ( tan ‘ ( i  ·  𝐴 ) )  /  i ) ) | 
						
							| 20 | 12 19 | eqtr4d | ⊢ ( 𝐴  ∈  ℝ  →  - ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( tan ‘ ( i  ·  - 𝐴 ) )  /  i ) ) | 
						
							| 21 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 22 |  | tanhlt1 | ⊢ ( - 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  - 𝐴 ) )  /  i )  <  1 ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  - 𝐴 ) )  /  i )  <  1 ) | 
						
							| 24 | 20 23 | eqbrtrd | ⊢ ( 𝐴  ∈  ℝ  →  - ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  <  1 ) | 
						
							| 25 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 26 |  | ltnegcon1 | ⊢ ( ( ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( - ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  <  1  ↔  - 1  <  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i ) ) ) | 
						
							| 27 | 1 25 26 | sylancl | ⊢ ( 𝐴  ∈  ℝ  →  ( - ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  <  1  ↔  - 1  <  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i ) ) ) | 
						
							| 28 | 24 27 | mpbid | ⊢ ( 𝐴  ∈  ℝ  →  - 1  <  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i ) ) | 
						
							| 29 |  | tanhlt1 | ⊢ ( 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  <  1 ) | 
						
							| 30 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 31 | 30 | rexri | ⊢ - 1  ∈  ℝ* | 
						
							| 32 | 25 | rexri | ⊢ 1  ∈  ℝ* | 
						
							| 33 |  | elioo2 | ⊢ ( ( - 1  ∈  ℝ*  ∧  1  ∈  ℝ* )  →  ( ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  ∈  ( - 1 (,) 1 )  ↔  ( ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  ∈  ℝ  ∧  - 1  <  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  ∧  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  <  1 ) ) ) | 
						
							| 34 | 31 32 33 | mp2an | ⊢ ( ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  ∈  ( - 1 (,) 1 )  ↔  ( ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  ∈  ℝ  ∧  - 1  <  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  ∧  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  <  1 ) ) | 
						
							| 35 | 1 28 29 34 | syl3anbrc | ⊢ ( 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  ∈  ( - 1 (,) 1 ) ) |