| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 2 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 4 | 1 2 3 | sylancr | ⊢ ( 𝐴  ∈  ℝ  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 5 |  | rpcoshcl | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  ∈  ℝ+ ) | 
						
							| 6 | 5 | rpne0d | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  ≠  0 ) | 
						
							| 7 |  | tanval | ⊢ ( ( ( i  ·  𝐴 )  ∈  ℂ  ∧  ( cos ‘ ( i  ·  𝐴 ) )  ≠  0 )  →  ( tan ‘ ( i  ·  𝐴 ) )  =  ( ( sin ‘ ( i  ·  𝐴 ) )  /  ( cos ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 8 | 4 6 7 | syl2anc | ⊢ ( 𝐴  ∈  ℝ  →  ( tan ‘ ( i  ·  𝐴 ) )  =  ( ( sin ‘ ( i  ·  𝐴 ) )  /  ( cos ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( ( sin ‘ ( i  ·  𝐴 ) )  /  ( cos ‘ ( i  ·  𝐴 ) ) )  /  i ) ) | 
						
							| 10 | 4 | sincld | ⊢ ( 𝐴  ∈  ℝ  →  ( sin ‘ ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 11 |  | recoshcl | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 13 | 1 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  i  ∈  ℂ ) | 
						
							| 14 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 15 | 14 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  i  ≠  0 ) | 
						
							| 16 | 10 12 13 6 15 | divdiv32d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( sin ‘ ( i  ·  𝐴 ) )  /  ( cos ‘ ( i  ·  𝐴 ) ) )  /  i )  =  ( ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  /  ( cos ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 17 | 9 16 | eqtrd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  /  ( cos ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 18 |  | resinhcl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  ∈  ℝ ) | 
						
							| 19 | 18 5 | rerpdivcld | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  /  ( cos ‘ ( i  ·  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 20 | 17 19 | eqeltrd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( tan ‘ ( i  ·  𝐴 ) )  /  i )  ∈  ℝ ) |