Metamath Proof Explorer


Theorem retanhcl

Description: The hyperbolic tangent of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion retanhcl AtaniAi

Proof

Step Hyp Ref Expression
1 ax-icn i
2 recn AA
3 mulcl iAiA
4 1 2 3 sylancr AiA
5 rpcoshcl AcosiA+
6 5 rpne0d AcosiA0
7 tanval iAcosiA0taniA=siniAcosiA
8 4 6 7 syl2anc AtaniA=siniAcosiA
9 8 oveq1d AtaniAi=siniAcosiAi
10 4 sincld AsiniA
11 recoshcl AcosiA
12 11 recnd AcosiA
13 1 a1i Ai
14 ine0 i0
15 14 a1i Ai0
16 10 12 13 6 15 divdiv32d AsiniAcosiAi=siniAicosiA
17 9 16 eqtrd AtaniAi=siniAicosiA
18 resinhcl AsiniAi
19 18 5 rerpdivcld AsiniAicosiA
20 17 19 eqeltrd AtaniAi