| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 3 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 4 |
1 2 3
|
sylancr |
|- ( A e. RR -> ( _i x. A ) e. CC ) |
| 5 |
|
rpcoshcl |
|- ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR+ ) |
| 6 |
5
|
rpne0d |
|- ( A e. RR -> ( cos ` ( _i x. A ) ) =/= 0 ) |
| 7 |
|
tanval |
|- ( ( ( _i x. A ) e. CC /\ ( cos ` ( _i x. A ) ) =/= 0 ) -> ( tan ` ( _i x. A ) ) = ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) ) |
| 8 |
4 6 7
|
syl2anc |
|- ( A e. RR -> ( tan ` ( _i x. A ) ) = ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) ) |
| 9 |
8
|
oveq1d |
|- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) / _i ) ) |
| 10 |
4
|
sincld |
|- ( A e. RR -> ( sin ` ( _i x. A ) ) e. CC ) |
| 11 |
|
recoshcl |
|- ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR ) |
| 12 |
11
|
recnd |
|- ( A e. RR -> ( cos ` ( _i x. A ) ) e. CC ) |
| 13 |
1
|
a1i |
|- ( A e. RR -> _i e. CC ) |
| 14 |
|
ine0 |
|- _i =/= 0 |
| 15 |
14
|
a1i |
|- ( A e. RR -> _i =/= 0 ) |
| 16 |
10 12 13 6 15
|
divdiv32d |
|- ( A e. RR -> ( ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) ) |
| 17 |
9 16
|
eqtrd |
|- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) ) |
| 18 |
|
resinhcl |
|- ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) e. RR ) |
| 19 |
18 5
|
rerpdivcld |
|- ( A e. RR -> ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) e. RR ) |
| 20 |
17 19
|
eqeltrd |
|- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) e. RR ) |