| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 2 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 3 |
|
divneg |
⊢ ( ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 4 |
2 3
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 5 |
1 4
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 6 |
5
|
3anidm12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 7 |
|
tanval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 8 |
7
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - ( tan ‘ 𝐴 ) = - ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 9 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
| 10 |
|
cosneg |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 13 |
11 12
|
eqnetrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ - 𝐴 ) ≠ 0 ) |
| 14 |
|
tanval |
⊢ ( ( - 𝐴 ∈ ℂ ∧ ( cos ‘ - 𝐴 ) ≠ 0 ) → ( tan ‘ - 𝐴 ) = ( ( sin ‘ - 𝐴 ) / ( cos ‘ - 𝐴 ) ) ) |
| 15 |
9 13 14
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ - 𝐴 ) = ( ( sin ‘ - 𝐴 ) / ( cos ‘ - 𝐴 ) ) ) |
| 16 |
|
sinneg |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) = - ( sin ‘ 𝐴 ) ) |
| 17 |
16 10
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ - 𝐴 ) / ( cos ‘ - 𝐴 ) ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ - 𝐴 ) / ( cos ‘ - 𝐴 ) ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 19 |
15 18
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ - 𝐴 ) = ( - ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 20 |
6 8 19
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ - 𝐴 ) = - ( tan ‘ 𝐴 ) ) |