Metamath Proof Explorer


Theorem tanneg

Description: The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014)

Ref Expression
Assertion tanneg AcosA0tanA=tanA

Proof

Step Hyp Ref Expression
1 coscl AcosA
2 sincl AsinA
3 divneg sinAcosAcosA0sinAcosA=sinAcosA
4 2 3 syl3an1 AcosAcosA0sinAcosA=sinAcosA
5 1 4 syl3an2 AAcosA0sinAcosA=sinAcosA
6 5 3anidm12 AcosA0sinAcosA=sinAcosA
7 tanval AcosA0tanA=sinAcosA
8 7 negeqd AcosA0tanA=sinAcosA
9 negcl AA
10 cosneg AcosA=cosA
11 10 adantr AcosA0cosA=cosA
12 simpr AcosA0cosA0
13 11 12 eqnetrd AcosA0cosA0
14 tanval AcosA0tanA=sinAcosA
15 9 13 14 syl2an2r AcosA0tanA=sinAcosA
16 sinneg AsinA=sinA
17 16 10 oveq12d AsinAcosA=sinAcosA
18 17 adantr AcosA0sinAcosA=sinAcosA
19 15 18 eqtrd AcosA0tanA=sinAcosA
20 6 8 19 3eqtr4rd AcosA0tanA=tanA