Step |
Hyp |
Ref |
Expression |
1 |
|
reefcl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ ) |
2 |
|
rehalfcl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ ) |
3 |
2
|
reefcld |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
4 |
3
|
sqge0d |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( ( exp ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
5 |
2
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℂ ) |
6 |
|
2z |
⊢ 2 ∈ ℤ |
7 |
|
efexp |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℂ ∧ 2 ∈ ℤ ) → ( exp ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
8 |
5 6 7
|
sylancl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
9 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
10 |
|
2cn |
⊢ 2 ∈ ℂ |
11 |
|
2ne0 |
⊢ 2 ≠ 0 |
12 |
|
divcan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
13 |
10 11 12
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
14 |
9 13
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
15 |
14
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( exp ‘ 𝐴 ) ) |
16 |
8 15
|
eqtr3d |
⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = ( exp ‘ 𝐴 ) ) |
17 |
4 16
|
breqtrd |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( exp ‘ 𝐴 ) ) |
18 |
|
efne0 |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ≠ 0 ) |
19 |
9 18
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ≠ 0 ) |
20 |
1 17 19
|
ne0gt0d |
⊢ ( 𝐴 ∈ ℝ → 0 < ( exp ‘ 𝐴 ) ) |