| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tancl |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. CC ) | 
						
							| 2 |  | tanval |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 3 | 2 | oveq1d |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( tan ` A ) ^ 2 ) = ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) ) | 
						
							| 4 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 5 | 4 | adantr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sin ` A ) e. CC ) | 
						
							| 6 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) e. CC ) | 
						
							| 8 |  | simpr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) =/= 0 ) | 
						
							| 9 | 5 7 8 | sqdivd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) | 
						
							| 10 | 3 9 | eqtrd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( tan ` A ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) | 
						
							| 11 | 5 | sqcld |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) ^ 2 ) e. CC ) | 
						
							| 12 | 7 | sqcld |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( cos ` A ) ^ 2 ) e. CC ) | 
						
							| 13 | 12 | negcld |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( cos ` A ) ^ 2 ) e. CC ) | 
						
							| 14 | 11 12 | subnegd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) - -u ( ( cos ` A ) ^ 2 ) ) = ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) | 
						
							| 15 |  | sincossq |  |-  ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) | 
						
							| 16 | 15 | adantr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) | 
						
							| 17 | 14 16 | eqtrd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) - -u ( ( cos ` A ) ^ 2 ) ) = 1 ) | 
						
							| 18 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 19 | 18 | a1i |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> 1 =/= 0 ) | 
						
							| 20 | 17 19 | eqnetrd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) - -u ( ( cos ` A ) ^ 2 ) ) =/= 0 ) | 
						
							| 21 | 11 13 20 | subne0ad |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) ^ 2 ) =/= -u ( ( cos ` A ) ^ 2 ) ) | 
						
							| 22 | 12 | mulm1d |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( -u 1 x. ( ( cos ` A ) ^ 2 ) ) = -u ( ( cos ` A ) ^ 2 ) ) | 
						
							| 23 | 21 22 | neeqtrrd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) ^ 2 ) =/= ( -u 1 x. ( ( cos ` A ) ^ 2 ) ) ) | 
						
							| 24 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 25 | 24 | a1i |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> -u 1 e. CC ) | 
						
							| 26 |  | sqne0 |  |-  ( ( cos ` A ) e. CC -> ( ( ( cos ` A ) ^ 2 ) =/= 0 <-> ( cos ` A ) =/= 0 ) ) | 
						
							| 27 | 6 26 | syl |  |-  ( A e. CC -> ( ( ( cos ` A ) ^ 2 ) =/= 0 <-> ( cos ` A ) =/= 0 ) ) | 
						
							| 28 | 27 | biimpar |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( cos ` A ) ^ 2 ) =/= 0 ) | 
						
							| 29 | 11 25 12 28 | divmul3d |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) = -u 1 <-> ( ( sin ` A ) ^ 2 ) = ( -u 1 x. ( ( cos ` A ) ^ 2 ) ) ) ) | 
						
							| 30 | 29 | necon3bid |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) =/= -u 1 <-> ( ( sin ` A ) ^ 2 ) =/= ( -u 1 x. ( ( cos ` A ) ^ 2 ) ) ) ) | 
						
							| 31 | 23 30 | mpbird |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) =/= -u 1 ) | 
						
							| 32 | 10 31 | eqnetrd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( tan ` A ) ^ 2 ) =/= -u 1 ) | 
						
							| 33 |  | atandm3 |  |-  ( ( tan ` A ) e. dom arctan <-> ( ( tan ` A ) e. CC /\ ( ( tan ` A ) ^ 2 ) =/= -u 1 ) ) | 
						
							| 34 | 1 32 33 | sylanbrc |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. dom arctan ) |