| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( tan ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 2 |  | tanval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( tan ‘ 𝐴 )  =  ( ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( tan ‘ 𝐴 ) ↑ 2 )  =  ( ( ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) ↑ 2 ) ) | 
						
							| 4 |  | sincl | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 6 |  | coscl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( cos ‘ 𝐴 )  ≠  0 ) | 
						
							| 9 | 5 7 8 | sqdivd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) ↑ 2 )  =  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  /  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 10 | 3 9 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( tan ‘ 𝐴 ) ↑ 2 )  =  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  /  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 11 | 5 | sqcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 12 | 7 | sqcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( cos ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 13 | 12 | negcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  - ( ( cos ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 14 | 11 12 | subnegd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  −  - ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 15 |  | sincossq | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  1 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  1 ) | 
						
							| 17 | 14 16 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  −  - ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  1 ) | 
						
							| 18 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 19 | 18 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  1  ≠  0 ) | 
						
							| 20 | 17 19 | eqnetrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  −  - ( ( cos ‘ 𝐴 ) ↑ 2 ) )  ≠  0 ) | 
						
							| 21 | 11 13 20 | subne0ad | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  ≠  - ( ( cos ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 22 | 12 | mulm1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( - 1  ·  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  - ( ( cos ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 23 | 21 22 | neeqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  ≠  ( - 1  ·  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 24 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 25 | 24 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  - 1  ∈  ℂ ) | 
						
							| 26 |  | sqne0 | ⊢ ( ( cos ‘ 𝐴 )  ∈  ℂ  →  ( ( ( cos ‘ 𝐴 ) ↑ 2 )  ≠  0  ↔  ( cos ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 27 | 6 26 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( cos ‘ 𝐴 ) ↑ 2 )  ≠  0  ↔  ( cos ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 28 | 27 | biimpar | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( cos ‘ 𝐴 ) ↑ 2 )  ≠  0 ) | 
						
							| 29 | 11 25 12 28 | divmul3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( sin ‘ 𝐴 ) ↑ 2 )  /  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  - 1  ↔  ( ( sin ‘ 𝐴 ) ↑ 2 )  =  ( - 1  ·  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 30 | 29 | necon3bid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( sin ‘ 𝐴 ) ↑ 2 )  /  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  ≠  - 1  ↔  ( ( sin ‘ 𝐴 ) ↑ 2 )  ≠  ( - 1  ·  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 31 | 23 30 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  /  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  ≠  - 1 ) | 
						
							| 32 | 10 31 | eqnetrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( tan ‘ 𝐴 ) ↑ 2 )  ≠  - 1 ) | 
						
							| 33 |  | atandm3 | ⊢ ( ( tan ‘ 𝐴 )  ∈  dom  arctan  ↔  ( ( tan ‘ 𝐴 )  ∈  ℂ  ∧  ( ( tan ‘ 𝐴 ) ↑ 2 )  ≠  - 1 ) ) | 
						
							| 34 | 1 32 33 | sylanbrc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( tan ‘ 𝐴 )  ∈  dom  arctan ) |