| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atancl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( arctan ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 2 |  | cosval | ⊢ ( ( arctan ‘ 𝐴 )  ∈  ℂ  →  ( cos ‘ ( arctan ‘ 𝐴 ) )  =  ( ( ( exp ‘ ( i  ·  ( arctan ‘ 𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( arctan ‘ 𝐴 ) ) ) )  /  2 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( cos ‘ ( arctan ‘ 𝐴 ) )  =  ( ( ( exp ‘ ( i  ·  ( arctan ‘ 𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( arctan ‘ 𝐴 ) ) ) )  /  2 ) ) | 
						
							| 4 |  | efiatan2 | ⊢ ( 𝐴  ∈  dom  arctan  →  ( exp ‘ ( i  ·  ( arctan ‘ 𝐴 ) ) )  =  ( ( 1  +  ( i  ·  𝐴 ) )  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 5 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 6 |  | mulneg12 | ⊢ ( ( i  ∈  ℂ  ∧  ( arctan ‘ 𝐴 )  ∈  ℂ )  →  ( - i  ·  ( arctan ‘ 𝐴 ) )  =  ( i  ·  - ( arctan ‘ 𝐴 ) ) ) | 
						
							| 7 | 5 1 6 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( - i  ·  ( arctan ‘ 𝐴 ) )  =  ( i  ·  - ( arctan ‘ 𝐴 ) ) ) | 
						
							| 8 |  | atanneg | ⊢ ( 𝐴  ∈  dom  arctan  →  ( arctan ‘ - 𝐴 )  =  - ( arctan ‘ 𝐴 ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( i  ·  ( arctan ‘ - 𝐴 ) )  =  ( i  ·  - ( arctan ‘ 𝐴 ) ) ) | 
						
							| 10 | 7 9 | eqtr4d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( - i  ·  ( arctan ‘ 𝐴 ) )  =  ( i  ·  ( arctan ‘ - 𝐴 ) ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( exp ‘ ( - i  ·  ( arctan ‘ 𝐴 ) ) )  =  ( exp ‘ ( i  ·  ( arctan ‘ - 𝐴 ) ) ) ) | 
						
							| 12 |  | atandmneg | ⊢ ( 𝐴  ∈  dom  arctan  →  - 𝐴  ∈  dom  arctan ) | 
						
							| 13 |  | efiatan2 | ⊢ ( - 𝐴  ∈  dom  arctan  →  ( exp ‘ ( i  ·  ( arctan ‘ - 𝐴 ) ) )  =  ( ( 1  +  ( i  ·  - 𝐴 ) )  /  ( √ ‘ ( 1  +  ( - 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( exp ‘ ( i  ·  ( arctan ‘ - 𝐴 ) ) )  =  ( ( 1  +  ( i  ·  - 𝐴 ) )  /  ( √ ‘ ( 1  +  ( - 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 15 |  | atandm4 | ⊢ ( 𝐴  ∈  dom  arctan  ↔  ( 𝐴  ∈  ℂ  ∧  ( 1  +  ( 𝐴 ↑ 2 ) )  ≠  0 ) ) | 
						
							| 16 | 15 | simplbi | ⊢ ( 𝐴  ∈  dom  arctan  →  𝐴  ∈  ℂ ) | 
						
							| 17 |  | mulneg2 | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  - 𝐴 )  =  - ( i  ·  𝐴 ) ) | 
						
							| 18 | 5 16 17 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( i  ·  - 𝐴 )  =  - ( i  ·  𝐴 ) ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( i  ·  - 𝐴 ) )  =  ( 1  +  - ( i  ·  𝐴 ) ) ) | 
						
							| 20 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 21 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 22 | 5 16 21 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 23 |  | negsub | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( 1  +  - ( i  ·  𝐴 ) )  =  ( 1  −  ( i  ·  𝐴 ) ) ) | 
						
							| 24 | 20 22 23 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  - ( i  ·  𝐴 ) )  =  ( 1  −  ( i  ·  𝐴 ) ) ) | 
						
							| 25 | 19 24 | eqtrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( i  ·  - 𝐴 ) )  =  ( 1  −  ( i  ·  𝐴 ) ) ) | 
						
							| 26 |  | sqneg | ⊢ ( 𝐴  ∈  ℂ  →  ( - 𝐴 ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 27 | 16 26 | syl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( - 𝐴 ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( - 𝐴 ↑ 2 ) )  =  ( 1  +  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( √ ‘ ( 1  +  ( - 𝐴 ↑ 2 ) ) )  =  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 30 | 25 29 | oveq12d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( 1  +  ( i  ·  - 𝐴 ) )  /  ( √ ‘ ( 1  +  ( - 𝐴 ↑ 2 ) ) ) )  =  ( ( 1  −  ( i  ·  𝐴 ) )  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 31 | 11 14 30 | 3eqtrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( exp ‘ ( - i  ·  ( arctan ‘ 𝐴 ) ) )  =  ( ( 1  −  ( i  ·  𝐴 ) )  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 32 | 4 31 | oveq12d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( exp ‘ ( i  ·  ( arctan ‘ 𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( arctan ‘ 𝐴 ) ) ) )  =  ( ( ( 1  +  ( i  ·  𝐴 ) )  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) )  +  ( ( 1  −  ( i  ·  𝐴 ) )  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) ) ) | 
						
							| 33 |  | addcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( 1  +  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 34 | 20 22 33 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 35 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( 1  −  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 36 | 20 22 35 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  −  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 37 | 16 | sqcld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 38 |  | addcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( 1  +  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 39 | 20 37 38 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 40 | 39 | sqrtcld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 41 | 39 | sqsqrtd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  =  ( 1  +  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 42 | 15 | simprbi | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( 𝐴 ↑ 2 ) )  ≠  0 ) | 
						
							| 43 | 41 42 | eqnetrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  ≠  0 ) | 
						
							| 44 |  | sqne0 | ⊢ ( ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) )  ∈  ℂ  →  ( ( ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  ≠  0  ↔  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) )  ≠  0 ) ) | 
						
							| 45 | 40 44 | syl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  ≠  0  ↔  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) )  ≠  0 ) ) | 
						
							| 46 | 43 45 | mpbid | ⊢ ( 𝐴  ∈  dom  arctan  →  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) )  ≠  0 ) | 
						
							| 47 | 34 36 40 46 | divdird | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( 1  +  ( i  ·  𝐴 ) )  +  ( 1  −  ( i  ·  𝐴 ) ) )  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) )  =  ( ( ( 1  +  ( i  ·  𝐴 ) )  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) )  +  ( ( 1  −  ( i  ·  𝐴 ) )  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) ) ) | 
						
							| 48 | 20 | a1i | ⊢ ( 𝐴  ∈  dom  arctan  →  1  ∈  ℂ ) | 
						
							| 49 | 48 22 48 | ppncand | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( 1  +  ( i  ·  𝐴 ) )  +  ( 1  −  ( i  ·  𝐴 ) ) )  =  ( 1  +  1 ) ) | 
						
							| 50 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 51 | 49 50 | eqtr4di | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( 1  +  ( i  ·  𝐴 ) )  +  ( 1  −  ( i  ·  𝐴 ) ) )  =  2 ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( 1  +  ( i  ·  𝐴 ) )  +  ( 1  −  ( i  ·  𝐴 ) ) )  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) )  =  ( 2  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 53 | 32 47 52 | 3eqtr2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( exp ‘ ( i  ·  ( arctan ‘ 𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( arctan ‘ 𝐴 ) ) ) )  =  ( 2  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 54 | 53 | oveq1d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( exp ‘ ( i  ·  ( arctan ‘ 𝐴 ) ) )  +  ( exp ‘ ( - i  ·  ( arctan ‘ 𝐴 ) ) ) )  /  2 )  =  ( ( 2  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) )  /  2 ) ) | 
						
							| 55 |  | 2cnd | ⊢ ( 𝐴  ∈  dom  arctan  →  2  ∈  ℂ ) | 
						
							| 56 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 57 | 56 | a1i | ⊢ ( 𝐴  ∈  dom  arctan  →  2  ≠  0 ) | 
						
							| 58 | 55 40 55 46 57 | divdiv32d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( 2  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) )  /  2 )  =  ( ( 2  /  2 )  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 59 |  | 2div2e1 | ⊢ ( 2  /  2 )  =  1 | 
						
							| 60 | 59 | oveq1i | ⊢ ( ( 2  /  2 )  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) )  =  ( 1  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 61 | 58 60 | eqtrdi | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( 2  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) )  /  2 )  =  ( 1  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 62 | 3 54 61 | 3eqtrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( cos ‘ ( arctan ‘ 𝐴 ) )  =  ( 1  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) ) |