| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atancl |  |-  ( A e. dom arctan -> ( arctan ` A ) e. CC ) | 
						
							| 2 |  | cosval |  |-  ( ( arctan ` A ) e. CC -> ( cos ` ( arctan ` A ) ) = ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) / 2 ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( A e. dom arctan -> ( cos ` ( arctan ` A ) ) = ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) / 2 ) ) | 
						
							| 4 |  | efiatan2 |  |-  ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) | 
						
							| 5 |  | ax-icn |  |-  _i e. CC | 
						
							| 6 |  | mulneg12 |  |-  ( ( _i e. CC /\ ( arctan ` A ) e. CC ) -> ( -u _i x. ( arctan ` A ) ) = ( _i x. -u ( arctan ` A ) ) ) | 
						
							| 7 | 5 1 6 | sylancr |  |-  ( A e. dom arctan -> ( -u _i x. ( arctan ` A ) ) = ( _i x. -u ( arctan ` A ) ) ) | 
						
							| 8 |  | atanneg |  |-  ( A e. dom arctan -> ( arctan ` -u A ) = -u ( arctan ` A ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( A e. dom arctan -> ( _i x. ( arctan ` -u A ) ) = ( _i x. -u ( arctan ` A ) ) ) | 
						
							| 10 | 7 9 | eqtr4d |  |-  ( A e. dom arctan -> ( -u _i x. ( arctan ` A ) ) = ( _i x. ( arctan ` -u A ) ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( A e. dom arctan -> ( exp ` ( -u _i x. ( arctan ` A ) ) ) = ( exp ` ( _i x. ( arctan ` -u A ) ) ) ) | 
						
							| 12 |  | atandmneg |  |-  ( A e. dom arctan -> -u A e. dom arctan ) | 
						
							| 13 |  | efiatan2 |  |-  ( -u A e. dom arctan -> ( exp ` ( _i x. ( arctan ` -u A ) ) ) = ( ( 1 + ( _i x. -u A ) ) / ( sqrt ` ( 1 + ( -u A ^ 2 ) ) ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` -u A ) ) ) = ( ( 1 + ( _i x. -u A ) ) / ( sqrt ` ( 1 + ( -u A ^ 2 ) ) ) ) ) | 
						
							| 15 |  | atandm4 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 + ( A ^ 2 ) ) =/= 0 ) ) | 
						
							| 16 | 15 | simplbi |  |-  ( A e. dom arctan -> A e. CC ) | 
						
							| 17 |  | mulneg2 |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 18 | 5 16 17 | sylancr |  |-  ( A e. dom arctan -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 + -u ( _i x. A ) ) ) | 
						
							| 20 |  | ax-1cn |  |-  1 e. CC | 
						
							| 21 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 22 | 5 16 21 | sylancr |  |-  ( A e. dom arctan -> ( _i x. A ) e. CC ) | 
						
							| 23 |  | negsub |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 24 | 20 22 23 | sylancr |  |-  ( A e. dom arctan -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 25 | 19 24 | eqtrd |  |-  ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 26 |  | sqneg |  |-  ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 27 | 16 26 | syl |  |-  ( A e. dom arctan -> ( -u A ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( A e. dom arctan -> ( 1 + ( -u A ^ 2 ) ) = ( 1 + ( A ^ 2 ) ) ) | 
						
							| 29 | 28 | fveq2d |  |-  ( A e. dom arctan -> ( sqrt ` ( 1 + ( -u A ^ 2 ) ) ) = ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) | 
						
							| 30 | 25 29 | oveq12d |  |-  ( A e. dom arctan -> ( ( 1 + ( _i x. -u A ) ) / ( sqrt ` ( 1 + ( -u A ^ 2 ) ) ) ) = ( ( 1 - ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) | 
						
							| 31 | 11 14 30 | 3eqtrd |  |-  ( A e. dom arctan -> ( exp ` ( -u _i x. ( arctan ` A ) ) ) = ( ( 1 - ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) | 
						
							| 32 | 4 31 | oveq12d |  |-  ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) = ( ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) + ( ( 1 - ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) ) | 
						
							| 33 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 34 | 20 22 33 | sylancr |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 35 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 36 | 20 22 35 | sylancr |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 37 | 16 | sqcld |  |-  ( A e. dom arctan -> ( A ^ 2 ) e. CC ) | 
						
							| 38 |  | addcl |  |-  ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 + ( A ^ 2 ) ) e. CC ) | 
						
							| 39 | 20 37 38 | sylancr |  |-  ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) e. CC ) | 
						
							| 40 | 39 | sqrtcld |  |-  ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC ) | 
						
							| 41 | 39 | sqsqrtd |  |-  ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) = ( 1 + ( A ^ 2 ) ) ) | 
						
							| 42 | 15 | simprbi |  |-  ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) =/= 0 ) | 
						
							| 43 | 41 42 | eqnetrd |  |-  ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 ) | 
						
							| 44 |  | sqne0 |  |-  ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) | 
						
							| 45 | 40 44 | syl |  |-  ( A e. dom arctan -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) | 
						
							| 46 | 43 45 | mpbid |  |-  ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) | 
						
							| 47 | 34 36 40 46 | divdird |  |-  ( A e. dom arctan -> ( ( ( 1 + ( _i x. A ) ) + ( 1 - ( _i x. A ) ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) + ( ( 1 - ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) ) | 
						
							| 48 | 20 | a1i |  |-  ( A e. dom arctan -> 1 e. CC ) | 
						
							| 49 | 48 22 48 | ppncand |  |-  ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) + ( 1 - ( _i x. A ) ) ) = ( 1 + 1 ) ) | 
						
							| 50 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 51 | 49 50 | eqtr4di |  |-  ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) + ( 1 - ( _i x. A ) ) ) = 2 ) | 
						
							| 52 | 51 | oveq1d |  |-  ( A e. dom arctan -> ( ( ( 1 + ( _i x. A ) ) + ( 1 - ( _i x. A ) ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) | 
						
							| 53 | 32 47 52 | 3eqtr2d |  |-  ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) = ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) | 
						
							| 54 | 53 | oveq1d |  |-  ( A e. dom arctan -> ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) / 2 ) = ( ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / 2 ) ) | 
						
							| 55 |  | 2cnd |  |-  ( A e. dom arctan -> 2 e. CC ) | 
						
							| 56 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 57 | 56 | a1i |  |-  ( A e. dom arctan -> 2 =/= 0 ) | 
						
							| 58 | 55 40 55 46 57 | divdiv32d |  |-  ( A e. dom arctan -> ( ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / 2 ) = ( ( 2 / 2 ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) | 
						
							| 59 |  | 2div2e1 |  |-  ( 2 / 2 ) = 1 | 
						
							| 60 | 59 | oveq1i |  |-  ( ( 2 / 2 ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( 1 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) | 
						
							| 61 | 58 60 | eqtrdi |  |-  ( A e. dom arctan -> ( ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / 2 ) = ( 1 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) | 
						
							| 62 | 3 54 61 | 3eqtrd |  |-  ( A e. dom arctan -> ( cos ` ( arctan ` A ) ) = ( 1 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |