| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cosatan |  |-  ( A e. dom arctan -> ( cos ` ( arctan ` A ) ) = ( 1 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) | 
						
							| 2 |  | ax-1cn |  |-  1 e. CC | 
						
							| 3 |  | atandm4 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 + ( A ^ 2 ) ) =/= 0 ) ) | 
						
							| 4 | 3 | simplbi |  |-  ( A e. dom arctan -> A e. CC ) | 
						
							| 5 | 4 | sqcld |  |-  ( A e. dom arctan -> ( A ^ 2 ) e. CC ) | 
						
							| 6 |  | addcl |  |-  ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 + ( A ^ 2 ) ) e. CC ) | 
						
							| 7 | 2 5 6 | sylancr |  |-  ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) e. CC ) | 
						
							| 8 | 7 | sqrtcld |  |-  ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC ) | 
						
							| 9 | 7 | sqsqrtd |  |-  ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) = ( 1 + ( A ^ 2 ) ) ) | 
						
							| 10 | 3 | simprbi |  |-  ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) =/= 0 ) | 
						
							| 11 | 9 10 | eqnetrd |  |-  ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 ) | 
						
							| 12 |  | sqne0 |  |-  ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) | 
						
							| 13 | 8 12 | syl |  |-  ( A e. dom arctan -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) | 
						
							| 14 | 11 13 | mpbid |  |-  ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) | 
						
							| 15 | 8 14 | recne0d |  |-  ( A e. dom arctan -> ( 1 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) =/= 0 ) | 
						
							| 16 | 1 15 | eqnetrd |  |-  ( A e. dom arctan -> ( cos ` ( arctan ` A ) ) =/= 0 ) |