| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cosatan | ⊢ ( 𝐴  ∈  dom  arctan  →  ( cos ‘ ( arctan ‘ 𝐴 ) )  =  ( 1  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 2 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 3 |  | atandm4 | ⊢ ( 𝐴  ∈  dom  arctan  ↔  ( 𝐴  ∈  ℂ  ∧  ( 1  +  ( 𝐴 ↑ 2 ) )  ≠  0 ) ) | 
						
							| 4 | 3 | simplbi | ⊢ ( 𝐴  ∈  dom  arctan  →  𝐴  ∈  ℂ ) | 
						
							| 5 | 4 | sqcld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 6 |  | addcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( 1  +  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 7 | 2 5 6 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 8 | 7 | sqrtcld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 9 | 7 | sqsqrtd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  =  ( 1  +  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 10 | 3 | simprbi | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( 𝐴 ↑ 2 ) )  ≠  0 ) | 
						
							| 11 | 9 10 | eqnetrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  ≠  0 ) | 
						
							| 12 |  | sqne0 | ⊢ ( ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) )  ∈  ℂ  →  ( ( ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  ≠  0  ↔  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) )  ≠  0 ) ) | 
						
							| 13 | 8 12 | syl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  ≠  0  ↔  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) )  ≠  0 ) ) | 
						
							| 14 | 11 13 | mpbid | ⊢ ( 𝐴  ∈  dom  arctan  →  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) )  ≠  0 ) | 
						
							| 15 | 8 14 | recne0d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  /  ( √ ‘ ( 1  +  ( 𝐴 ↑ 2 ) ) ) )  ≠  0 ) | 
						
							| 16 | 1 15 | eqnetrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( cos ‘ ( arctan ‘ 𝐴 ) )  ≠  0 ) |