| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atandm3 |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ) |
| 2 |
|
sqcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 3 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 4 |
|
subeq0 |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ - 1 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) − - 1 ) = 0 ↔ ( 𝐴 ↑ 2 ) = - 1 ) ) |
| 5 |
2 3 4
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 ↑ 2 ) − - 1 ) = 0 ↔ ( 𝐴 ↑ 2 ) = - 1 ) ) |
| 6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 7 |
|
subneg |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − - 1 ) = ( ( 𝐴 ↑ 2 ) + 1 ) ) |
| 8 |
2 6 7
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) − - 1 ) = ( ( 𝐴 ↑ 2 ) + 1 ) ) |
| 9 |
|
addcom |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) + 1 ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 10 |
2 6 9
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) + 1 ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 11 |
8 10
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) − - 1 ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 ↑ 2 ) − - 1 ) = 0 ↔ ( 1 + ( 𝐴 ↑ 2 ) ) = 0 ) ) |
| 13 |
5 12
|
bitr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = - 1 ↔ ( 1 + ( 𝐴 ↑ 2 ) ) = 0 ) ) |
| 14 |
13
|
necon3bid |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) ≠ - 1 ↔ ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) ) |
| 15 |
14
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ↔ ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) ) |
| 16 |
1 15
|
bitri |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) ) |