| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn |  |-  _i e. CC | 
						
							| 2 |  | atandm2 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) | 
						
							| 3 | 2 | simp1bi |  |-  ( A e. dom arctan -> A e. CC ) | 
						
							| 4 |  | mulneg2 |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 5 | 1 3 4 | sylancr |  |-  ( A e. dom arctan -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 - -u ( _i x. A ) ) ) | 
						
							| 7 |  | ax-1cn |  |-  1 e. CC | 
						
							| 8 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 9 | 1 3 8 | sylancr |  |-  ( A e. dom arctan -> ( _i x. A ) e. CC ) | 
						
							| 10 |  | subneg |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 11 | 7 9 10 | sylancr |  |-  ( A e. dom arctan -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 12 | 6 11 | eqtrd |  |-  ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( A e. dom arctan -> ( log ` ( 1 - ( _i x. -u A ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) | 
						
							| 14 | 5 | oveq2d |  |-  ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 + -u ( _i x. A ) ) ) | 
						
							| 15 |  | negsub |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 16 | 7 9 15 | sylancr |  |-  ( A e. dom arctan -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 17 | 14 16 | eqtrd |  |-  ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( A e. dom arctan -> ( log ` ( 1 + ( _i x. -u A ) ) ) = ( log ` ( 1 - ( _i x. A ) ) ) ) | 
						
							| 19 | 13 18 | oveq12d |  |-  ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. -u A ) ) ) - ( log ` ( 1 + ( _i x. -u A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 20 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 21 | 7 9 20 | sylancr |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 22 | 2 | simp2bi |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) | 
						
							| 23 | 21 22 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) | 
						
							| 24 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 25 | 7 9 24 | sylancr |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 26 | 2 | simp3bi |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) | 
						
							| 27 | 25 26 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) | 
						
							| 28 | 23 27 | negsubdi2d |  |-  ( A e. dom arctan -> -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 29 | 19 28 | eqtr4d |  |-  ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. -u A ) ) ) - ( log ` ( 1 + ( _i x. -u A ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( A e. dom arctan -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. -u A ) ) ) - ( log ` ( 1 + ( _i x. -u A ) ) ) ) ) = ( ( _i / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 31 |  | halfcl |  |-  ( _i e. CC -> ( _i / 2 ) e. CC ) | 
						
							| 32 | 1 31 | ax-mp |  |-  ( _i / 2 ) e. CC | 
						
							| 33 | 23 27 | subcld |  |-  ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) | 
						
							| 34 |  | mulneg2 |  |-  ( ( ( _i / 2 ) e. CC /\ ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) -> ( ( _i / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 35 | 32 33 34 | sylancr |  |-  ( A e. dom arctan -> ( ( _i / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 36 | 30 35 | eqtrd |  |-  ( A e. dom arctan -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. -u A ) ) ) - ( log ` ( 1 + ( _i x. -u A ) ) ) ) ) = -u ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 37 |  | atandmneg |  |-  ( A e. dom arctan -> -u A e. dom arctan ) | 
						
							| 38 |  | atanval |  |-  ( -u A e. dom arctan -> ( arctan ` -u A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. -u A ) ) ) - ( log ` ( 1 + ( _i x. -u A ) ) ) ) ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( A e. dom arctan -> ( arctan ` -u A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. -u A ) ) ) - ( log ` ( 1 + ( _i x. -u A ) ) ) ) ) ) | 
						
							| 40 |  | atanval |  |-  ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 41 | 40 | negeqd |  |-  ( A e. dom arctan -> -u ( arctan ` A ) = -u ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 42 | 36 39 41 | 3eqtr4d |  |-  ( A e. dom arctan -> ( arctan ` -u A ) = -u ( arctan ` A ) ) |