| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atandm3 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) | 
						
							| 2 | 1 | simplbi |  |-  ( A e. dom arctan -> A e. CC ) | 
						
							| 3 | 2 | negcld |  |-  ( A e. dom arctan -> -u A e. CC ) | 
						
							| 4 |  | sqneg |  |-  ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( A e. dom arctan -> ( -u A ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 6 | 1 | simprbi |  |-  ( A e. dom arctan -> ( A ^ 2 ) =/= -u 1 ) | 
						
							| 7 | 5 6 | eqnetrd |  |-  ( A e. dom arctan -> ( -u A ^ 2 ) =/= -u 1 ) | 
						
							| 8 |  | atandm3 |  |-  ( -u A e. dom arctan <-> ( -u A e. CC /\ ( -u A ^ 2 ) =/= -u 1 ) ) | 
						
							| 9 | 3 7 8 | sylanbrc |  |-  ( A e. dom arctan -> -u A e. dom arctan ) |