| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg0 |  |-  -u 0 = 0 | 
						
							| 2 | 1 | fveq2i |  |-  ( arctan ` -u 0 ) = ( arctan ` 0 ) | 
						
							| 3 |  | 0re |  |-  0 e. RR | 
						
							| 4 |  | atanre |  |-  ( 0 e. RR -> 0 e. dom arctan ) | 
						
							| 5 |  | atanneg |  |-  ( 0 e. dom arctan -> ( arctan ` -u 0 ) = -u ( arctan ` 0 ) ) | 
						
							| 6 | 3 4 5 | mp2b |  |-  ( arctan ` -u 0 ) = -u ( arctan ` 0 ) | 
						
							| 7 | 2 6 | eqtr3i |  |-  ( arctan ` 0 ) = -u ( arctan ` 0 ) | 
						
							| 8 |  | atancl |  |-  ( 0 e. dom arctan -> ( arctan ` 0 ) e. CC ) | 
						
							| 9 | 3 4 8 | mp2b |  |-  ( arctan ` 0 ) e. CC | 
						
							| 10 | 9 | eqnegi |  |-  ( ( arctan ` 0 ) = -u ( arctan ` 0 ) <-> ( arctan ` 0 ) = 0 ) | 
						
							| 11 | 7 10 | mpbi |  |-  ( arctan ` 0 ) = 0 |