| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neg0 |
|- -u 0 = 0 |
| 2 |
1
|
fveq2i |
|- ( arctan ` -u 0 ) = ( arctan ` 0 ) |
| 3 |
|
0re |
|- 0 e. RR |
| 4 |
|
atanre |
|- ( 0 e. RR -> 0 e. dom arctan ) |
| 5 |
|
atanneg |
|- ( 0 e. dom arctan -> ( arctan ` -u 0 ) = -u ( arctan ` 0 ) ) |
| 6 |
3 4 5
|
mp2b |
|- ( arctan ` -u 0 ) = -u ( arctan ` 0 ) |
| 7 |
2 6
|
eqtr3i |
|- ( arctan ` 0 ) = -u ( arctan ` 0 ) |
| 8 |
|
atancl |
|- ( 0 e. dom arctan -> ( arctan ` 0 ) e. CC ) |
| 9 |
3 4 8
|
mp2b |
|- ( arctan ` 0 ) e. CC |
| 10 |
9
|
eqnegi |
|- ( ( arctan ` 0 ) = -u ( arctan ` 0 ) <-> ( arctan ` 0 ) = 0 ) |
| 11 |
7 10
|
mpbi |
|- ( arctan ` 0 ) = 0 |