| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atandm3 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) | 
						
							| 2 | 1 | simplbi |  |-  ( A e. dom arctan -> A e. CC ) | 
						
							| 3 | 2 | cjcld |  |-  ( A e. dom arctan -> ( * ` A ) e. CC ) | 
						
							| 4 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 5 |  | cjexp |  |-  ( ( A e. CC /\ 2 e. NN0 ) -> ( * ` ( A ^ 2 ) ) = ( ( * ` A ) ^ 2 ) ) | 
						
							| 6 | 2 4 5 | sylancl |  |-  ( A e. dom arctan -> ( * ` ( A ^ 2 ) ) = ( ( * ` A ) ^ 2 ) ) | 
						
							| 7 | 2 | sqcld |  |-  ( A e. dom arctan -> ( A ^ 2 ) e. CC ) | 
						
							| 8 | 7 | cjcjd |  |-  ( A e. dom arctan -> ( * ` ( * ` ( A ^ 2 ) ) ) = ( A ^ 2 ) ) | 
						
							| 9 | 1 | simprbi |  |-  ( A e. dom arctan -> ( A ^ 2 ) =/= -u 1 ) | 
						
							| 10 | 8 9 | eqnetrd |  |-  ( A e. dom arctan -> ( * ` ( * ` ( A ^ 2 ) ) ) =/= -u 1 ) | 
						
							| 11 |  | fveq2 |  |-  ( ( * ` ( A ^ 2 ) ) = -u 1 -> ( * ` ( * ` ( A ^ 2 ) ) ) = ( * ` -u 1 ) ) | 
						
							| 12 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 13 |  | cjre |  |-  ( -u 1 e. RR -> ( * ` -u 1 ) = -u 1 ) | 
						
							| 14 | 12 13 | ax-mp |  |-  ( * ` -u 1 ) = -u 1 | 
						
							| 15 | 11 14 | eqtrdi |  |-  ( ( * ` ( A ^ 2 ) ) = -u 1 -> ( * ` ( * ` ( A ^ 2 ) ) ) = -u 1 ) | 
						
							| 16 | 15 | necon3i |  |-  ( ( * ` ( * ` ( A ^ 2 ) ) ) =/= -u 1 -> ( * ` ( A ^ 2 ) ) =/= -u 1 ) | 
						
							| 17 | 10 16 | syl |  |-  ( A e. dom arctan -> ( * ` ( A ^ 2 ) ) =/= -u 1 ) | 
						
							| 18 | 6 17 | eqnetrrd |  |-  ( A e. dom arctan -> ( ( * ` A ) ^ 2 ) =/= -u 1 ) | 
						
							| 19 |  | atandm3 |  |-  ( ( * ` A ) e. dom arctan <-> ( ( * ` A ) e. CC /\ ( ( * ` A ) ^ 2 ) =/= -u 1 ) ) | 
						
							| 20 | 3 18 19 | sylanbrc |  |-  ( A e. dom arctan -> ( * ` A ) e. dom arctan ) |