| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atandm3 | ⊢ ( 𝐴  ∈  dom  arctan  ↔  ( 𝐴  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ≠  - 1 ) ) | 
						
							| 2 | 1 | simplbi | ⊢ ( 𝐴  ∈  dom  arctan  →  𝐴  ∈  ℂ ) | 
						
							| 3 | 2 | cjcld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 4 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 5 |  | cjexp | ⊢ ( ( 𝐴  ∈  ℂ  ∧  2  ∈  ℕ0 )  →  ( ∗ ‘ ( 𝐴 ↑ 2 ) )  =  ( ( ∗ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 6 | 2 4 5 | sylancl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ∗ ‘ ( 𝐴 ↑ 2 ) )  =  ( ( ∗ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 7 | 2 | sqcld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 8 | 7 | cjcjd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ∗ ‘ ( ∗ ‘ ( 𝐴 ↑ 2 ) ) )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 9 | 1 | simprbi | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 𝐴 ↑ 2 )  ≠  - 1 ) | 
						
							| 10 | 8 9 | eqnetrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ∗ ‘ ( ∗ ‘ ( 𝐴 ↑ 2 ) ) )  ≠  - 1 ) | 
						
							| 11 |  | fveq2 | ⊢ ( ( ∗ ‘ ( 𝐴 ↑ 2 ) )  =  - 1  →  ( ∗ ‘ ( ∗ ‘ ( 𝐴 ↑ 2 ) ) )  =  ( ∗ ‘ - 1 ) ) | 
						
							| 12 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 13 |  | cjre | ⊢ ( - 1  ∈  ℝ  →  ( ∗ ‘ - 1 )  =  - 1 ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ ( ∗ ‘ - 1 )  =  - 1 | 
						
							| 15 | 11 14 | eqtrdi | ⊢ ( ( ∗ ‘ ( 𝐴 ↑ 2 ) )  =  - 1  →  ( ∗ ‘ ( ∗ ‘ ( 𝐴 ↑ 2 ) ) )  =  - 1 ) | 
						
							| 16 | 15 | necon3i | ⊢ ( ( ∗ ‘ ( ∗ ‘ ( 𝐴 ↑ 2 ) ) )  ≠  - 1  →  ( ∗ ‘ ( 𝐴 ↑ 2 ) )  ≠  - 1 ) | 
						
							| 17 | 10 16 | syl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ∗ ‘ ( 𝐴 ↑ 2 ) )  ≠  - 1 ) | 
						
							| 18 | 6 17 | eqnetrrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ∗ ‘ 𝐴 ) ↑ 2 )  ≠  - 1 ) | 
						
							| 19 |  | atandm3 | ⊢ ( ( ∗ ‘ 𝐴 )  ∈  dom  arctan  ↔  ( ( ∗ ‘ 𝐴 )  ∈  ℂ  ∧  ( ( ∗ ‘ 𝐴 ) ↑ 2 )  ≠  - 1 ) ) | 
						
							| 20 | 3 18 19 | sylanbrc | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ∗ ‘ 𝐴 )  ∈  dom  arctan ) |