| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 2 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) |
| 3 |
|
fveq2 |
⊢ ( 𝐴 = - i → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ - i ) ) |
| 4 |
|
ax-icn |
⊢ i ∈ ℂ |
| 5 |
4
|
renegi |
⊢ ( ℜ ‘ - i ) = - ( ℜ ‘ i ) |
| 6 |
|
rei |
⊢ ( ℜ ‘ i ) = 0 |
| 7 |
6
|
negeqi |
⊢ - ( ℜ ‘ i ) = - 0 |
| 8 |
|
neg0 |
⊢ - 0 = 0 |
| 9 |
5 7 8
|
3eqtri |
⊢ ( ℜ ‘ - i ) = 0 |
| 10 |
3 9
|
eqtrdi |
⊢ ( 𝐴 = - i → ( ℜ ‘ 𝐴 ) = 0 ) |
| 11 |
10
|
necon3i |
⊢ ( ( ℜ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ - i ) |
| 12 |
2 11
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → 𝐴 ≠ - i ) |
| 13 |
|
fveq2 |
⊢ ( 𝐴 = i → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ i ) ) |
| 14 |
13 6
|
eqtrdi |
⊢ ( 𝐴 = i → ( ℜ ‘ 𝐴 ) = 0 ) |
| 15 |
14
|
necon3i |
⊢ ( ( ℜ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ i ) |
| 16 |
2 15
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → 𝐴 ≠ i ) |
| 17 |
|
atandm |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) |
| 18 |
1 12 16 17
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → 𝐴 ∈ dom arctan ) |
| 19 |
|
halfcl |
⊢ ( i ∈ ℂ → ( i / 2 ) ∈ ℂ ) |
| 20 |
4 19
|
ax-mp |
⊢ ( i / 2 ) ∈ ℂ |
| 21 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 22 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 23 |
4 1 22
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · 𝐴 ) ∈ ℂ ) |
| 24 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 25 |
21 23 24
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 26 |
|
atandm2 |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) |
| 27 |
18 26
|
sylib |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) |
| 28 |
27
|
simp2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 − ( i · 𝐴 ) ) ≠ 0 ) |
| 29 |
25 28
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 30 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 31 |
21 23 30
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 32 |
27
|
simp3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( i · 𝐴 ) ) ≠ 0 ) |
| 33 |
31 32
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 34 |
29 33
|
subcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ℂ ) |
| 35 |
|
cjmul |
⊢ ( ( ( i / 2 ) ∈ ℂ ∧ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ℂ ) → ( ∗ ‘ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( ∗ ‘ ( i / 2 ) ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) |
| 36 |
20 34 35
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( ∗ ‘ ( i / 2 ) ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) |
| 37 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 38 |
|
2cn |
⊢ 2 ∈ ℂ |
| 39 |
4 38
|
cjdivi |
⊢ ( 2 ≠ 0 → ( ∗ ‘ ( i / 2 ) ) = ( ( ∗ ‘ i ) / ( ∗ ‘ 2 ) ) ) |
| 40 |
37 39
|
ax-mp |
⊢ ( ∗ ‘ ( i / 2 ) ) = ( ( ∗ ‘ i ) / ( ∗ ‘ 2 ) ) |
| 41 |
|
divneg |
⊢ ( ( i ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( i / 2 ) = ( - i / 2 ) ) |
| 42 |
4 38 37 41
|
mp3an |
⊢ - ( i / 2 ) = ( - i / 2 ) |
| 43 |
|
cji |
⊢ ( ∗ ‘ i ) = - i |
| 44 |
|
2re |
⊢ 2 ∈ ℝ |
| 45 |
|
cjre |
⊢ ( 2 ∈ ℝ → ( ∗ ‘ 2 ) = 2 ) |
| 46 |
44 45
|
ax-mp |
⊢ ( ∗ ‘ 2 ) = 2 |
| 47 |
43 46
|
oveq12i |
⊢ ( ( ∗ ‘ i ) / ( ∗ ‘ 2 ) ) = ( - i / 2 ) |
| 48 |
42 47
|
eqtr4i |
⊢ - ( i / 2 ) = ( ( ∗ ‘ i ) / ( ∗ ‘ 2 ) ) |
| 49 |
40 48
|
eqtr4i |
⊢ ( ∗ ‘ ( i / 2 ) ) = - ( i / 2 ) |
| 50 |
49
|
oveq1i |
⊢ ( ( ∗ ‘ ( i / 2 ) ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( - ( i / 2 ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 51 |
34
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ∈ ℂ ) |
| 52 |
|
mulneg12 |
⊢ ( ( ( i / 2 ) ∈ ℂ ∧ ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ∈ ℂ ) → ( - ( i / 2 ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( i / 2 ) · - ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) |
| 53 |
20 51 52
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( - ( i / 2 ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( i / 2 ) · - ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) |
| 54 |
50 53
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ ( i / 2 ) ) · ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( i / 2 ) · - ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) |
| 55 |
|
cjsub |
⊢ ( ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ∧ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) → ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = ( ( ∗ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) − ( ∗ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 56 |
29 33 55
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = ( ( ∗ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) − ( ∗ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 57 |
|
imsub |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 58 |
21 23 57
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 59 |
|
reim |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) |
| 61 |
60
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℑ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 62 |
58 61
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) ) |
| 63 |
|
df-neg |
⊢ - ( ℜ ‘ 𝐴 ) = ( 0 − ( ℜ ‘ 𝐴 ) ) |
| 64 |
|
im1 |
⊢ ( ℑ ‘ 1 ) = 0 |
| 65 |
64
|
oveq1i |
⊢ ( ( ℑ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( 0 − ( ℜ ‘ 𝐴 ) ) |
| 66 |
63 65
|
eqtr4i |
⊢ - ( ℜ ‘ 𝐴 ) = ( ( ℑ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) |
| 67 |
62 66
|
eqtr4di |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) = - ( ℜ ‘ 𝐴 ) ) |
| 68 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 70 |
69
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 71 |
70 2
|
negne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → - ( ℜ ‘ 𝐴 ) ≠ 0 ) |
| 72 |
67 71
|
eqnetrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) ≠ 0 ) |
| 73 |
|
logcj |
⊢ ( ( ( 1 − ( i · 𝐴 ) ) ∈ ℂ ∧ ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ∗ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) |
| 74 |
25 72 73
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ∗ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) |
| 75 |
|
cjsub |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ∗ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( ∗ ‘ 1 ) − ( ∗ ‘ ( i · 𝐴 ) ) ) ) |
| 76 |
21 23 75
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( ∗ ‘ 1 ) − ( ∗ ‘ ( i · 𝐴 ) ) ) ) |
| 77 |
|
1re |
⊢ 1 ∈ ℝ |
| 78 |
|
cjre |
⊢ ( 1 ∈ ℝ → ( ∗ ‘ 1 ) = 1 ) |
| 79 |
77 78
|
mp1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ 1 ) = 1 ) |
| 80 |
|
cjmul |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ∗ ‘ ( i · 𝐴 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) ) |
| 81 |
4 1 80
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( i · 𝐴 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) ) |
| 82 |
43
|
oveq1i |
⊢ ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) = ( - i · ( ∗ ‘ 𝐴 ) ) |
| 83 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 85 |
|
mulneg1 |
⊢ ( ( i ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( - i · ( ∗ ‘ 𝐴 ) ) = - ( i · ( ∗ ‘ 𝐴 ) ) ) |
| 86 |
4 84 85
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( - i · ( ∗ ‘ 𝐴 ) ) = - ( i · ( ∗ ‘ 𝐴 ) ) ) |
| 87 |
82 86
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) = - ( i · ( ∗ ‘ 𝐴 ) ) ) |
| 88 |
81 87
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( i · 𝐴 ) ) = - ( i · ( ∗ ‘ 𝐴 ) ) ) |
| 89 |
79 88
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ 1 ) − ( ∗ ‘ ( i · 𝐴 ) ) ) = ( 1 − - ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 90 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 91 |
4 84 90
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 92 |
|
subneg |
⊢ ( ( 1 ∈ ℂ ∧ ( i · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 − - ( i · ( ∗ ‘ 𝐴 ) ) ) = ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 93 |
21 91 92
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 − - ( i · ( ∗ ‘ 𝐴 ) ) ) = ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 94 |
76 89 93
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 95 |
94
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 96 |
74 95
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 97 |
|
imadd |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) + ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 98 |
21 23 97
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) + ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 99 |
60
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 0 + ( ℜ ‘ 𝐴 ) ) = ( 0 + ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 100 |
64
|
oveq1i |
⊢ ( ( ℑ ‘ 1 ) + ( ℑ ‘ ( i · 𝐴 ) ) ) = ( 0 + ( ℑ ‘ ( i · 𝐴 ) ) ) |
| 101 |
99 100
|
eqtr4di |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 0 + ( ℜ ‘ 𝐴 ) ) = ( ( ℑ ‘ 1 ) + ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 102 |
70
|
addlidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 0 + ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 103 |
98 101 102
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 104 |
103 2
|
eqnetrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) ≠ 0 ) |
| 105 |
|
logcj |
⊢ ( ( ( 1 + ( i · 𝐴 ) ) ∈ ℂ ∧ ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( ∗ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 106 |
31 104 105
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( ∗ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 107 |
|
cjadd |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ∗ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ( ∗ ‘ 1 ) + ( ∗ ‘ ( i · 𝐴 ) ) ) ) |
| 108 |
21 23 107
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ( ∗ ‘ 1 ) + ( ∗ ‘ ( i · 𝐴 ) ) ) ) |
| 109 |
79 88
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ 1 ) + ( ∗ ‘ ( i · 𝐴 ) ) ) = ( 1 + - ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 110 |
|
negsub |
⊢ ( ( 1 ∈ ℂ ∧ ( i · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 + - ( i · ( ∗ ‘ 𝐴 ) ) ) = ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 111 |
21 91 110
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 + - ( i · ( ∗ ‘ 𝐴 ) ) ) = ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 112 |
108 109 111
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) |
| 113 |
112
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 114 |
106 113
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 115 |
96 114
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ∗ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) − ( ∗ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = ( ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
| 116 |
56 115
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = ( ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
| 117 |
116
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → - ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = - ( ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
| 118 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ ( i · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 119 |
21 91 118
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 120 |
|
atandmcj |
⊢ ( 𝐴 ∈ dom arctan → ( ∗ ‘ 𝐴 ) ∈ dom arctan ) |
| 121 |
18 120
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ dom arctan ) |
| 122 |
|
atandm2 |
⊢ ( ( ∗ ‘ 𝐴 ) ∈ dom arctan ↔ ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ≠ 0 ∧ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ≠ 0 ) ) |
| 123 |
122
|
simp3bi |
⊢ ( ( ∗ ‘ 𝐴 ) ∈ dom arctan → ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ≠ 0 ) |
| 124 |
121 123
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ≠ 0 ) |
| 125 |
119 124
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 126 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( i · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 127 |
21 91 126
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 128 |
122
|
simp2bi |
⊢ ( ( ∗ ‘ 𝐴 ) ∈ dom arctan → ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ≠ 0 ) |
| 129 |
121 128
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ≠ 0 ) |
| 130 |
127 129
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 131 |
125 130
|
negsubdi2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → - ( ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) = ( ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
| 132 |
117 131
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → - ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = ( ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
| 133 |
132
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( i / 2 ) · - ( ∗ ‘ ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) ) |
| 134 |
36 54 133
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) ) |
| 135 |
|
atanval |
⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 136 |
18 135
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( arctan ‘ 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 137 |
136
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( ∗ ‘ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) |
| 138 |
|
atanval |
⊢ ( ( ∗ ‘ 𝐴 ) ∈ dom arctan → ( arctan ‘ ( ∗ ‘ 𝐴 ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) ) |
| 139 |
121 138
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( arctan ‘ ( ∗ ‘ 𝐴 ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( ∗ ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( ∗ ‘ 𝐴 ) ) ) ) ) ) ) |
| 140 |
134 137 139
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) |
| 141 |
18 140
|
jca |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ∈ dom arctan ∧ ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) ) |