| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
| 2 |
1
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) = ( arctan ‘ 0 ) ) |
| 3 |
|
atan0 |
⊢ ( arctan ‘ 0 ) = 0 |
| 4 |
|
0re |
⊢ 0 ∈ ℝ |
| 5 |
3 4
|
eqeltri |
⊢ ( arctan ‘ 0 ) ∈ ℝ |
| 6 |
2 5
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) ∈ ℝ ) |
| 7 |
|
atanre |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ dom arctan ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ dom arctan ) |
| 9 |
|
atancl |
⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) ∈ ℂ ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( arctan ‘ 𝐴 ) ∈ ℂ ) |
| 11 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 13 |
|
rere |
⊢ ( 𝐴 ∈ ℝ → ( ℜ ‘ 𝐴 ) = 𝐴 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ 𝐴 ) = 𝐴 ) |
| 15 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
| 16 |
14 15
|
eqnetrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) |
| 17 |
|
atancj |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ∈ dom arctan ∧ ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) ) |
| 18 |
12 16 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∈ dom arctan ∧ ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) ) |
| 19 |
18
|
simprd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) |
| 20 |
|
cjre |
⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ 𝐴 ) = 𝐴 ) |
| 22 |
21
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( arctan ‘ ( ∗ ‘ 𝐴 ) ) = ( arctan ‘ 𝐴 ) ) |
| 23 |
19 22
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ 𝐴 ) ) |
| 24 |
10 23
|
cjrebd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( arctan ‘ 𝐴 ) ∈ ℝ ) |
| 25 |
6 24
|
pm2.61dane |
⊢ ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ℝ ) |