Metamath Proof Explorer


Theorem atanrecl

Description: The arctangent function is real for all real inputs. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atanrecl ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → 𝐴 = 0 )
2 1 fveq2d ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) = ( arctan ‘ 0 ) )
3 atan0 ( arctan ‘ 0 ) = 0
4 0re 0 ∈ ℝ
5 3 4 eqeltri ( arctan ‘ 0 ) ∈ ℝ
6 2 5 eqeltrdi ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) ∈ ℝ )
7 atanre ( 𝐴 ∈ ℝ → 𝐴 ∈ dom arctan )
8 7 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ dom arctan )
9 atancl ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) ∈ ℂ )
10 8 9 syl ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( arctan ‘ 𝐴 ) ∈ ℂ )
11 simpl ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ )
12 11 recnd ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ )
13 rere ( 𝐴 ∈ ℝ → ( ℜ ‘ 𝐴 ) = 𝐴 )
14 13 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ 𝐴 ) = 𝐴 )
15 simpr ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 )
16 14 15 eqnetrd ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ 𝐴 ) ≠ 0 )
17 atancj ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ∈ dom arctan ∧ ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) )
18 12 16 17 syl2anc ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∈ dom arctan ∧ ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) )
19 18 simprd ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) )
20 cjre ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 )
21 20 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ 𝐴 ) = 𝐴 )
22 21 fveq2d ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( arctan ‘ ( ∗ ‘ 𝐴 ) ) = ( arctan ‘ 𝐴 ) )
23 19 22 eqtrd ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ 𝐴 ) )
24 10 23 cjrebd ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( arctan ‘ 𝐴 ) ∈ ℝ )
25 6 24 pm2.61dane ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ℝ )