| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  𝐴  =  0 ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  ( arctan ‘ 𝐴 )  =  ( arctan ‘ 0 ) ) | 
						
							| 3 |  | atan0 | ⊢ ( arctan ‘ 0 )  =  0 | 
						
							| 4 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 5 | 3 4 | eqeltri | ⊢ ( arctan ‘ 0 )  ∈  ℝ | 
						
							| 6 | 2 5 | eqeltrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  ( arctan ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 7 |  | atanre | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  dom  arctan ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  𝐴  ∈  dom  arctan ) | 
						
							| 9 |  | atancl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( arctan ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( arctan ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  𝐴  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 13 |  | rere | ⊢ ( 𝐴  ∈  ℝ  →  ( ℜ ‘ 𝐴 )  =  𝐴 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( ℜ ‘ 𝐴 )  =  𝐴 ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  𝐴  ≠  0 ) | 
						
							| 16 | 14 15 | eqnetrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( ℜ ‘ 𝐴 )  ≠  0 ) | 
						
							| 17 |  | atancj | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 𝐴  ∈  dom  arctan  ∧  ( ∗ ‘ ( arctan ‘ 𝐴 ) )  =  ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) ) | 
						
							| 18 | 12 16 17 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( 𝐴  ∈  dom  arctan  ∧  ( ∗ ‘ ( arctan ‘ 𝐴 ) )  =  ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) ) | 
						
							| 19 | 18 | simprd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( ∗ ‘ ( arctan ‘ 𝐴 ) )  =  ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 20 |  | cjre | ⊢ ( 𝐴  ∈  ℝ  →  ( ∗ ‘ 𝐴 )  =  𝐴 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( ∗ ‘ 𝐴 )  =  𝐴 ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( arctan ‘ ( ∗ ‘ 𝐴 ) )  =  ( arctan ‘ 𝐴 ) ) | 
						
							| 23 | 19 22 | eqtrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( ∗ ‘ ( arctan ‘ 𝐴 ) )  =  ( arctan ‘ 𝐴 ) ) | 
						
							| 24 | 10 23 | cjrebd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( arctan ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 25 | 6 24 | pm2.61dane | ⊢ ( 𝐴  ∈  ℝ  →  ( arctan ‘ 𝐴 )  ∈  ℝ ) |