Description: A real number is in the domain of the arctangent function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanre | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ dom arctan ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 3 | 2 | a1i | ⊢ ( 𝐴 ∈ ℝ → - 1 ∈ ℝ ) |
| 4 | 0red | ⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) | |
| 5 | resqcl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ∈ ℝ ) | |
| 6 | neg1lt0 | ⊢ - 1 < 0 | |
| 7 | 6 | a1i | ⊢ ( 𝐴 ∈ ℝ → - 1 < 0 ) |
| 8 | sqge0 | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 ↑ 2 ) ) | |
| 9 | 3 4 5 7 8 | ltletrd | ⊢ ( 𝐴 ∈ ℝ → - 1 < ( 𝐴 ↑ 2 ) ) |
| 10 | 3 9 | gtned | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ≠ - 1 ) |
| 11 | atandm3 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ) | |
| 12 | 1 10 11 | sylanbrc | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ dom arctan ) |