| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( A e. RR /\ A = 0 ) -> A = 0 ) | 
						
							| 2 | 1 | fveq2d |  |-  ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) = ( arctan ` 0 ) ) | 
						
							| 3 |  | atan0 |  |-  ( arctan ` 0 ) = 0 | 
						
							| 4 |  | 0re |  |-  0 e. RR | 
						
							| 5 | 3 4 | eqeltri |  |-  ( arctan ` 0 ) e. RR | 
						
							| 6 | 2 5 | eqeltrdi |  |-  ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) e. RR ) | 
						
							| 7 |  | atanre |  |-  ( A e. RR -> A e. dom arctan ) | 
						
							| 8 | 7 | adantr |  |-  ( ( A e. RR /\ A =/= 0 ) -> A e. dom arctan ) | 
						
							| 9 |  | atancl |  |-  ( A e. dom arctan -> ( arctan ` A ) e. CC ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( arctan ` A ) e. CC ) | 
						
							| 11 |  | simpl |  |-  ( ( A e. RR /\ A =/= 0 ) -> A e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( ( A e. RR /\ A =/= 0 ) -> A e. CC ) | 
						
							| 13 |  | rere |  |-  ( A e. RR -> ( Re ` A ) = A ) | 
						
							| 14 | 13 | adantr |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( Re ` A ) = A ) | 
						
							| 15 |  | simpr |  |-  ( ( A e. RR /\ A =/= 0 ) -> A =/= 0 ) | 
						
							| 16 | 14 15 | eqnetrd |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( Re ` A ) =/= 0 ) | 
						
							| 17 |  | atancj |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A e. dom arctan /\ ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) ) | 
						
							| 18 | 12 16 17 | syl2anc |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( A e. dom arctan /\ ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) ) | 
						
							| 19 | 18 | simprd |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) | 
						
							| 20 |  | cjre |  |-  ( A e. RR -> ( * ` A ) = A ) | 
						
							| 21 | 20 | adantr |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( * ` A ) = A ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( arctan ` ( * ` A ) ) = ( arctan ` A ) ) | 
						
							| 23 | 19 22 | eqtrd |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( * ` ( arctan ` A ) ) = ( arctan ` A ) ) | 
						
							| 24 | 10 23 | cjrebd |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( arctan ` A ) e. RR ) | 
						
							| 25 | 6 24 | pm2.61dane |  |-  ( A e. RR -> ( arctan ` A ) e. RR ) |