| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atanval |
|- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 2 |
1
|
oveq2d |
|- ( A e. dom arctan -> ( _i x. ( arctan ` A ) ) = ( _i x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 3 |
|
ax-icn |
|- _i e. CC |
| 4 |
3
|
a1i |
|- ( A e. dom arctan -> _i e. CC ) |
| 5 |
|
halfcl |
|- ( _i e. CC -> ( _i / 2 ) e. CC ) |
| 6 |
3 5
|
mp1i |
|- ( A e. dom arctan -> ( _i / 2 ) e. CC ) |
| 7 |
|
ax-1cn |
|- 1 e. CC |
| 8 |
|
atandm2 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
| 9 |
8
|
simp1bi |
|- ( A e. dom arctan -> A e. CC ) |
| 10 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 11 |
3 9 10
|
sylancr |
|- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 12 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
| 13 |
7 11 12
|
sylancr |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 14 |
8
|
simp2bi |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 15 |
13 14
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 16 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
| 17 |
7 11 16
|
sylancr |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 18 |
8
|
simp3bi |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 19 |
17 18
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 20 |
15 19
|
subcld |
|- ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 21 |
4 6 20
|
mulassd |
|- ( A e. dom arctan -> ( ( _i x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( _i x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 22 |
|
2cn |
|- 2 e. CC |
| 23 |
|
2ne0 |
|- 2 =/= 0 |
| 24 |
|
divneg |
|- ( ( 1 e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( 1 / 2 ) = ( -u 1 / 2 ) ) |
| 25 |
7 22 23 24
|
mp3an |
|- -u ( 1 / 2 ) = ( -u 1 / 2 ) |
| 26 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 27 |
26
|
oveq1i |
|- ( ( _i x. _i ) / 2 ) = ( -u 1 / 2 ) |
| 28 |
3 3 22 23
|
divassi |
|- ( ( _i x. _i ) / 2 ) = ( _i x. ( _i / 2 ) ) |
| 29 |
25 27 28
|
3eqtr2i |
|- -u ( 1 / 2 ) = ( _i x. ( _i / 2 ) ) |
| 30 |
29
|
oveq1i |
|- ( -u ( 1 / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( _i x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 31 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 32 |
|
mulneg12 |
|- ( ( ( 1 / 2 ) e. CC /\ ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) -> ( -u ( 1 / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 33 |
31 20 32
|
sylancr |
|- ( A e. dom arctan -> ( -u ( 1 / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 34 |
15 19
|
negsubdi2d |
|- ( A e. dom arctan -> -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 35 |
34
|
oveq2d |
|- ( A e. dom arctan -> ( ( 1 / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 36 |
31
|
a1i |
|- ( A e. dom arctan -> ( 1 / 2 ) e. CC ) |
| 37 |
36 19 15
|
subdid |
|- ( A e. dom arctan -> ( ( 1 / 2 ) x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 38 |
33 35 37
|
3eqtrd |
|- ( A e. dom arctan -> ( -u ( 1 / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 39 |
30 38
|
eqtr3id |
|- ( A e. dom arctan -> ( ( _i x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 40 |
2 21 39
|
3eqtr2d |
|- ( A e. dom arctan -> ( _i x. ( arctan ` A ) ) = ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 41 |
40
|
fveq2d |
|- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( exp ` ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) |
| 42 |
|
mulcl |
|- ( ( ( 1 / 2 ) e. CC /\ ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 43 |
31 19 42
|
sylancr |
|- ( A e. dom arctan -> ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 44 |
|
mulcl |
|- ( ( ( 1 / 2 ) e. CC /\ ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
| 45 |
31 15 44
|
sylancr |
|- ( A e. dom arctan -> ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
| 46 |
|
efsub |
|- ( ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC /\ ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) -> ( exp ` ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) / ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) |
| 47 |
43 45 46
|
syl2anc |
|- ( A e. dom arctan -> ( exp ` ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) / ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) |
| 48 |
17 18 36
|
cxpefd |
|- ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 49 |
|
cxpsqrt |
|- ( ( 1 + ( _i x. A ) ) e. CC -> ( ( 1 + ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 + ( _i x. A ) ) ) ) |
| 50 |
17 49
|
syl |
|- ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 + ( _i x. A ) ) ) ) |
| 51 |
48 50
|
eqtr3d |
|- ( A e. dom arctan -> ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( sqrt ` ( 1 + ( _i x. A ) ) ) ) |
| 52 |
13 14 36
|
cxpefd |
|- ( A e. dom arctan -> ( ( 1 - ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 53 |
|
cxpsqrt |
|- ( ( 1 - ( _i x. A ) ) e. CC -> ( ( 1 - ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 - ( _i x. A ) ) ) ) |
| 54 |
13 53
|
syl |
|- ( A e. dom arctan -> ( ( 1 - ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 - ( _i x. A ) ) ) ) |
| 55 |
52 54
|
eqtr3d |
|- ( A e. dom arctan -> ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( sqrt ` ( 1 - ( _i x. A ) ) ) ) |
| 56 |
51 55
|
oveq12d |
|- ( A e. dom arctan -> ( ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) / ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( sqrt ` ( 1 + ( _i x. A ) ) ) / ( sqrt ` ( 1 - ( _i x. A ) ) ) ) ) |
| 57 |
41 47 56
|
3eqtrd |
|- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( ( sqrt ` ( 1 + ( _i x. A ) ) ) / ( sqrt ` ( 1 - ( _i x. A ) ) ) ) ) |