| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atanval |  |-  ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( A e. dom arctan -> ( _i x. ( arctan ` A ) ) = ( _i x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 3 |  | ax-icn |  |-  _i e. CC | 
						
							| 4 | 3 | a1i |  |-  ( A e. dom arctan -> _i e. CC ) | 
						
							| 5 |  | halfcl |  |-  ( _i e. CC -> ( _i / 2 ) e. CC ) | 
						
							| 6 | 3 5 | mp1i |  |-  ( A e. dom arctan -> ( _i / 2 ) e. CC ) | 
						
							| 7 |  | ax-1cn |  |-  1 e. CC | 
						
							| 8 |  | atandm2 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) | 
						
							| 9 | 8 | simp1bi |  |-  ( A e. dom arctan -> A e. CC ) | 
						
							| 10 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 11 | 3 9 10 | sylancr |  |-  ( A e. dom arctan -> ( _i x. A ) e. CC ) | 
						
							| 12 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 13 | 7 11 12 | sylancr |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 14 | 8 | simp2bi |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) | 
						
							| 15 | 13 14 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) | 
						
							| 16 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 17 | 7 11 16 | sylancr |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 18 | 8 | simp3bi |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) | 
						
							| 19 | 17 18 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) | 
						
							| 20 | 15 19 | subcld |  |-  ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) | 
						
							| 21 | 4 6 20 | mulassd |  |-  ( A e. dom arctan -> ( ( _i x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( _i x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 22 |  | 2cn |  |-  2 e. CC | 
						
							| 23 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 24 |  | divneg |  |-  ( ( 1 e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( 1 / 2 ) = ( -u 1 / 2 ) ) | 
						
							| 25 | 7 22 23 24 | mp3an |  |-  -u ( 1 / 2 ) = ( -u 1 / 2 ) | 
						
							| 26 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 27 | 26 | oveq1i |  |-  ( ( _i x. _i ) / 2 ) = ( -u 1 / 2 ) | 
						
							| 28 | 3 3 22 23 | divassi |  |-  ( ( _i x. _i ) / 2 ) = ( _i x. ( _i / 2 ) ) | 
						
							| 29 | 25 27 28 | 3eqtr2i |  |-  -u ( 1 / 2 ) = ( _i x. ( _i / 2 ) ) | 
						
							| 30 | 29 | oveq1i |  |-  ( -u ( 1 / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( _i x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 31 |  | halfcn |  |-  ( 1 / 2 ) e. CC | 
						
							| 32 |  | mulneg12 |  |-  ( ( ( 1 / 2 ) e. CC /\ ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) -> ( -u ( 1 / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 33 | 31 20 32 | sylancr |  |-  ( A e. dom arctan -> ( -u ( 1 / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 34 | 15 19 | negsubdi2d |  |-  ( A e. dom arctan -> -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( A e. dom arctan -> ( ( 1 / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 36 | 31 | a1i |  |-  ( A e. dom arctan -> ( 1 / 2 ) e. CC ) | 
						
							| 37 | 36 19 15 | subdid |  |-  ( A e. dom arctan -> ( ( 1 / 2 ) x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 38 | 33 35 37 | 3eqtrd |  |-  ( A e. dom arctan -> ( -u ( 1 / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 39 | 30 38 | eqtr3id |  |-  ( A e. dom arctan -> ( ( _i x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 40 | 2 21 39 | 3eqtr2d |  |-  ( A e. dom arctan -> ( _i x. ( arctan ` A ) ) = ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 41 | 40 | fveq2d |  |-  ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( exp ` ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) | 
						
							| 42 |  | mulcl |  |-  ( ( ( 1 / 2 ) e. CC /\ ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) | 
						
							| 43 | 31 19 42 | sylancr |  |-  ( A e. dom arctan -> ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) | 
						
							| 44 |  | mulcl |  |-  ( ( ( 1 / 2 ) e. CC /\ ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) | 
						
							| 45 | 31 15 44 | sylancr |  |-  ( A e. dom arctan -> ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) | 
						
							| 46 |  | efsub |  |-  ( ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC /\ ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) -> ( exp ` ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) / ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) | 
						
							| 47 | 43 45 46 | syl2anc |  |-  ( A e. dom arctan -> ( exp ` ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) / ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) | 
						
							| 48 | 17 18 36 | cxpefd |  |-  ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 49 |  | cxpsqrt |  |-  ( ( 1 + ( _i x. A ) ) e. CC -> ( ( 1 + ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 + ( _i x. A ) ) ) ) | 
						
							| 50 | 17 49 | syl |  |-  ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 + ( _i x. A ) ) ) ) | 
						
							| 51 | 48 50 | eqtr3d |  |-  ( A e. dom arctan -> ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( sqrt ` ( 1 + ( _i x. A ) ) ) ) | 
						
							| 52 | 13 14 36 | cxpefd |  |-  ( A e. dom arctan -> ( ( 1 - ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 53 |  | cxpsqrt |  |-  ( ( 1 - ( _i x. A ) ) e. CC -> ( ( 1 - ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 - ( _i x. A ) ) ) ) | 
						
							| 54 | 13 53 | syl |  |-  ( A e. dom arctan -> ( ( 1 - ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 - ( _i x. A ) ) ) ) | 
						
							| 55 | 52 54 | eqtr3d |  |-  ( A e. dom arctan -> ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( sqrt ` ( 1 - ( _i x. A ) ) ) ) | 
						
							| 56 | 51 55 | oveq12d |  |-  ( A e. dom arctan -> ( ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) / ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( sqrt ` ( 1 + ( _i x. A ) ) ) / ( sqrt ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 57 | 41 47 56 | 3eqtrd |  |-  ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( ( sqrt ` ( 1 + ( _i x. A ) ) ) / ( sqrt ` ( 1 - ( _i x. A ) ) ) ) ) |