| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re |  |-  0 e. RR | 
						
							| 2 |  | atandm2 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) | 
						
							| 3 | 2 | simp1bi |  |-  ( A e. dom arctan -> A e. CC ) | 
						
							| 4 | 3 | recld |  |-  ( A e. dom arctan -> ( Re ` A ) e. RR ) | 
						
							| 5 |  | leloe |  |-  ( ( 0 e. RR /\ ( Re ` A ) e. RR ) -> ( 0 <_ ( Re ` A ) <-> ( 0 < ( Re ` A ) \/ 0 = ( Re ` A ) ) ) ) | 
						
							| 6 | 1 4 5 | sylancr |  |-  ( A e. dom arctan -> ( 0 <_ ( Re ` A ) <-> ( 0 < ( Re ` A ) \/ 0 = ( Re ` A ) ) ) ) | 
						
							| 7 | 6 | biimpa |  |-  ( ( A e. dom arctan /\ 0 <_ ( Re ` A ) ) -> ( 0 < ( Re ` A ) \/ 0 = ( Re ` A ) ) ) | 
						
							| 8 |  | ax-1cn |  |-  1 e. CC | 
						
							| 9 |  | ax-icn |  |-  _i e. CC | 
						
							| 10 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 11 | 9 3 10 | sylancr |  |-  ( A e. dom arctan -> ( _i x. A ) e. CC ) | 
						
							| 12 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 13 | 8 11 12 | sylancr |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 14 | 2 | simp3bi |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) | 
						
							| 15 | 13 14 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) | 
						
							| 16 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 17 | 8 11 16 | sylancr |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 18 | 2 | simp2bi |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) | 
						
							| 19 | 17 18 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) | 
						
							| 20 | 15 19 | addcld |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) | 
						
							| 21 | 20 | adantr |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) | 
						
							| 22 |  | pire |  |-  _pi e. RR | 
						
							| 23 | 22 | renegcli |  |-  -u _pi e. RR | 
						
							| 24 | 23 | a1i |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> -u _pi e. RR ) | 
						
							| 25 | 19 | adantr |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) | 
						
							| 26 | 25 | imcld |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) e. RR ) | 
						
							| 27 | 15 | adantr |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) | 
						
							| 28 | 27 | imcld |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) e. RR ) | 
						
							| 29 | 28 26 | readdcld |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR ) | 
						
							| 30 | 17 | adantr |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 31 |  | im1 |  |-  ( Im ` 1 ) = 0 | 
						
							| 32 | 31 | oveq1i |  |-  ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) = ( 0 - ( Im ` ( _i x. A ) ) ) | 
						
							| 33 |  | df-neg |  |-  -u ( Im ` ( _i x. A ) ) = ( 0 - ( Im ` ( _i x. A ) ) ) | 
						
							| 34 | 32 33 | eqtr4i |  |-  ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) = -u ( Im ` ( _i x. A ) ) | 
						
							| 35 | 11 | adantr |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( _i x. A ) e. CC ) | 
						
							| 36 |  | imsub |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) | 
						
							| 37 | 8 35 36 | sylancr |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) | 
						
							| 38 | 3 | adantr |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> A e. CC ) | 
						
							| 39 |  | reim |  |-  ( A e. CC -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) | 
						
							| 40 | 38 39 | syl |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) | 
						
							| 41 | 40 | negeqd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> -u ( Re ` A ) = -u ( Im ` ( _i x. A ) ) ) | 
						
							| 42 | 34 37 41 | 3eqtr4a |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = -u ( Re ` A ) ) | 
						
							| 43 | 4 | lt0neg2d |  |-  ( A e. dom arctan -> ( 0 < ( Re ` A ) <-> -u ( Re ` A ) < 0 ) ) | 
						
							| 44 | 43 | biimpa |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> -u ( Re ` A ) < 0 ) | 
						
							| 45 | 42 44 | eqbrtrd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( 1 - ( _i x. A ) ) ) < 0 ) | 
						
							| 46 |  | argimlt0 |  |-  ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( Im ` ( 1 - ( _i x. A ) ) ) < 0 ) -> ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) e. ( -u _pi (,) 0 ) ) | 
						
							| 47 | 30 45 46 | syl2anc |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) e. ( -u _pi (,) 0 ) ) | 
						
							| 48 |  | eliooord |  |-  ( ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) e. ( -u _pi (,) 0 ) -> ( -u _pi < ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) /\ ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) < 0 ) ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( -u _pi < ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) /\ ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) < 0 ) ) | 
						
							| 50 | 49 | simpld |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> -u _pi < ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 51 | 13 | adantr |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 52 |  | simpr |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> 0 < ( Re ` A ) ) | 
						
							| 53 |  | imadd |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) | 
						
							| 54 | 8 35 53 | sylancr |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) | 
						
							| 55 | 40 | oveq2d |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` 1 ) + ( Re ` A ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) | 
						
							| 56 | 31 | oveq1i |  |-  ( ( Im ` 1 ) + ( Re ` A ) ) = ( 0 + ( Re ` A ) ) | 
						
							| 57 | 38 | recld |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Re ` A ) e. RR ) | 
						
							| 58 | 57 | recnd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Re ` A ) e. CC ) | 
						
							| 59 | 58 | addlidd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( 0 + ( Re ` A ) ) = ( Re ` A ) ) | 
						
							| 60 | 56 59 | eqtrid |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` 1 ) + ( Re ` A ) ) = ( Re ` A ) ) | 
						
							| 61 | 54 55 60 | 3eqtr2d |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( Re ` A ) ) | 
						
							| 62 | 52 61 | breqtrrd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> 0 < ( Im ` ( 1 + ( _i x. A ) ) ) ) | 
						
							| 63 |  | argimgt0 |  |-  ( ( ( 1 + ( _i x. A ) ) e. CC /\ 0 < ( Im ` ( 1 + ( _i x. A ) ) ) ) -> ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) e. ( 0 (,) _pi ) ) | 
						
							| 64 | 51 62 63 | syl2anc |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) e. ( 0 (,) _pi ) ) | 
						
							| 65 |  | eliooord |  |-  ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) e. ( 0 (,) _pi ) -> ( 0 < ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) /\ ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) < _pi ) ) | 
						
							| 66 | 64 65 | syl |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( 0 < ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) /\ ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) < _pi ) ) | 
						
							| 67 | 66 | simpld |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> 0 < ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 68 | 28 26 | ltaddpos2d |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( 0 < ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) <-> ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) < ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) | 
						
							| 69 | 67 68 | mpbid |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) < ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 70 | 24 26 29 50 69 | lttrd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> -u _pi < ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 71 | 27 25 | imaddd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 72 | 70 71 | breqtrrd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 73 | 22 | a1i |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> _pi e. RR ) | 
						
							| 74 |  | 0red |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> 0 e. RR ) | 
						
							| 75 | 49 | simprd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) < 0 ) | 
						
							| 76 | 26 74 28 75 | ltadd2dd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) < ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + 0 ) ) | 
						
							| 77 | 28 | recnd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) | 
						
							| 78 | 77 | addridd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + 0 ) = ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 79 | 76 78 | breqtrd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) < ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 80 | 66 | simprd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) < _pi ) | 
						
							| 81 | 29 28 73 79 80 | lttrd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi ) | 
						
							| 82 | 29 73 81 | ltled |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) | 
						
							| 83 | 71 82 | eqbrtrd |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) | 
						
							| 84 |  | ellogrn |  |-  ( ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log <-> ( ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC /\ -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) ) | 
						
							| 85 | 21 72 83 84 | syl3anbrc |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) | 
						
							| 86 |  | 0red |  |-  ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> 0 e. RR ) | 
						
							| 87 | 11 | adantr |  |-  ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( _i x. A ) e. CC ) | 
						
							| 88 |  | simpr |  |-  ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> 0 = ( Re ` A ) ) | 
						
							| 89 | 3 | adantr |  |-  ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> A e. CC ) | 
						
							| 90 | 89 39 | syl |  |-  ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) | 
						
							| 91 | 88 90 | eqtr2d |  |-  ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( Im ` ( _i x. A ) ) = 0 ) | 
						
							| 92 | 87 91 | reim0bd |  |-  ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( _i x. A ) e. RR ) | 
						
							| 93 | 15 19 | addcomd |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 94 | 93 | ad2antrr |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 95 |  | logrncl |  |-  ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. ran log ) | 
						
							| 96 | 17 18 95 | syl2anc |  |-  ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. ran log ) | 
						
							| 97 | 96 | ad2antrr |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. ran log ) | 
						
							| 98 |  | 1re |  |-  1 e. RR | 
						
							| 99 | 92 | adantr |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( _i x. A ) e. RR ) | 
						
							| 100 |  | readdcl |  |-  ( ( 1 e. RR /\ ( _i x. A ) e. RR ) -> ( 1 + ( _i x. A ) ) e. RR ) | 
						
							| 101 | 98 99 100 | sylancr |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( 1 + ( _i x. A ) ) e. RR ) | 
						
							| 102 |  | 0red |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> 0 e. RR ) | 
						
							| 103 |  | 1red |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> 1 e. RR ) | 
						
							| 104 |  | 0lt1 |  |-  0 < 1 | 
						
							| 105 | 104 | a1i |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> 0 < 1 ) | 
						
							| 106 |  | addge01 |  |-  ( ( 1 e. RR /\ ( _i x. A ) e. RR ) -> ( 0 <_ ( _i x. A ) <-> 1 <_ ( 1 + ( _i x. A ) ) ) ) | 
						
							| 107 | 98 92 106 | sylancr |  |-  ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( 0 <_ ( _i x. A ) <-> 1 <_ ( 1 + ( _i x. A ) ) ) ) | 
						
							| 108 | 107 | biimpa |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> 1 <_ ( 1 + ( _i x. A ) ) ) | 
						
							| 109 | 102 103 101 105 108 | ltletrd |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> 0 < ( 1 + ( _i x. A ) ) ) | 
						
							| 110 | 101 109 | elrpd |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( 1 + ( _i x. A ) ) e. RR+ ) | 
						
							| 111 | 110 | relogcld |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. RR ) | 
						
							| 112 |  | logrnaddcl |  |-  ( ( ( log ` ( 1 - ( _i x. A ) ) ) e. ran log /\ ( log ` ( 1 + ( _i x. A ) ) ) e. RR ) -> ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) e. ran log ) | 
						
							| 113 | 97 111 112 | syl2anc |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) e. ran log ) | 
						
							| 114 | 94 113 | eqeltrd |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) | 
						
							| 115 |  | logrncl |  |-  ( ( ( 1 + ( _i x. A ) ) e. CC /\ ( 1 + ( _i x. A ) ) =/= 0 ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. ran log ) | 
						
							| 116 | 13 14 115 | syl2anc |  |-  ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. ran log ) | 
						
							| 117 | 116 | ad2antrr |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. ran log ) | 
						
							| 118 | 92 | adantr |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( _i x. A ) e. RR ) | 
						
							| 119 |  | resubcl |  |-  ( ( 1 e. RR /\ ( _i x. A ) e. RR ) -> ( 1 - ( _i x. A ) ) e. RR ) | 
						
							| 120 | 98 118 119 | sylancr |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( 1 - ( _i x. A ) ) e. RR ) | 
						
							| 121 |  | 0red |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> 0 e. RR ) | 
						
							| 122 |  | 1red |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> 1 e. RR ) | 
						
							| 123 | 104 | a1i |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> 0 < 1 ) | 
						
							| 124 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 125 |  | 1red |  |-  ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> 1 e. RR ) | 
						
							| 126 | 92 86 125 | lesub2d |  |-  ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( ( _i x. A ) <_ 0 <-> ( 1 - 0 ) <_ ( 1 - ( _i x. A ) ) ) ) | 
						
							| 127 | 126 | biimpa |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( 1 - 0 ) <_ ( 1 - ( _i x. A ) ) ) | 
						
							| 128 | 124 127 | eqbrtrrid |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> 1 <_ ( 1 - ( _i x. A ) ) ) | 
						
							| 129 | 121 122 120 123 128 | ltletrd |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> 0 < ( 1 - ( _i x. A ) ) ) | 
						
							| 130 | 120 129 | elrpd |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( 1 - ( _i x. A ) ) e. RR+ ) | 
						
							| 131 | 130 | relogcld |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. RR ) | 
						
							| 132 |  | logrnaddcl |  |-  ( ( ( log ` ( 1 + ( _i x. A ) ) ) e. ran log /\ ( log ` ( 1 - ( _i x. A ) ) ) e. RR ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) | 
						
							| 133 | 117 131 132 | syl2anc |  |-  ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) | 
						
							| 134 | 86 92 114 133 | lecasei |  |-  ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) | 
						
							| 135 | 85 134 | jaodan |  |-  ( ( A e. dom arctan /\ ( 0 < ( Re ` A ) \/ 0 = ( Re ` A ) ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) | 
						
							| 136 | 7 135 | syldan |  |-  ( ( A e. dom arctan /\ 0 <_ ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |