| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red |  |-  ( A e. dom arctan -> 0 e. RR ) | 
						
							| 2 |  | atandm2 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) | 
						
							| 3 | 2 | simp1bi |  |-  ( A e. dom arctan -> A e. CC ) | 
						
							| 4 | 3 | recld |  |-  ( A e. dom arctan -> ( Re ` A ) e. RR ) | 
						
							| 5 |  | atanlogaddlem |  |-  ( ( A e. dom arctan /\ 0 <_ ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) | 
						
							| 6 |  | ax-1cn |  |-  1 e. CC | 
						
							| 7 |  | ax-icn |  |-  _i e. CC | 
						
							| 8 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 9 | 7 3 8 | sylancr |  |-  ( A e. dom arctan -> ( _i x. A ) e. CC ) | 
						
							| 10 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 11 | 6 9 10 | sylancr |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 12 | 2 | simp3bi |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) | 
						
							| 13 | 11 12 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) | 
						
							| 14 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 15 | 6 9 14 | sylancr |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 16 | 2 | simp2bi |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) | 
						
							| 17 | 15 16 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) | 
						
							| 18 | 13 17 | addcomd |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 19 |  | mulneg2 |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 20 | 7 3 19 | sylancr |  |-  ( A e. dom arctan -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 + -u ( _i x. A ) ) ) | 
						
							| 22 |  | negsub |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 23 | 6 9 22 | sylancr |  |-  ( A e. dom arctan -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 24 | 21 23 | eqtrd |  |-  ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( A e. dom arctan -> ( log ` ( 1 + ( _i x. -u A ) ) ) = ( log ` ( 1 - ( _i x. A ) ) ) ) | 
						
							| 26 | 20 | oveq2d |  |-  ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 - -u ( _i x. A ) ) ) | 
						
							| 27 |  | subneg |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 28 | 6 9 27 | sylancr |  |-  ( A e. dom arctan -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 29 | 26 28 | eqtrd |  |-  ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 30 | 29 | fveq2d |  |-  ( A e. dom arctan -> ( log ` ( 1 - ( _i x. -u A ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) | 
						
							| 31 | 25 30 | oveq12d |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 32 | 18 31 | eqtr4d |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) | 
						
							| 34 |  | atandmneg |  |-  ( A e. dom arctan -> -u A e. dom arctan ) | 
						
							| 35 | 4 | le0neg1d |  |-  ( A e. dom arctan -> ( ( Re ` A ) <_ 0 <-> 0 <_ -u ( Re ` A ) ) ) | 
						
							| 36 | 35 | biimpa |  |-  ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> 0 <_ -u ( Re ` A ) ) | 
						
							| 37 | 3 | renegd |  |-  ( A e. dom arctan -> ( Re ` -u A ) = -u ( Re ` A ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( Re ` -u A ) = -u ( Re ` A ) ) | 
						
							| 39 | 36 38 | breqtrrd |  |-  ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> 0 <_ ( Re ` -u A ) ) | 
						
							| 40 |  | atanlogaddlem |  |-  ( ( -u A e. dom arctan /\ 0 <_ ( Re ` -u A ) ) -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) e. ran log ) | 
						
							| 41 | 34 39 40 | syl2an2r |  |-  ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) e. ran log ) | 
						
							| 42 | 33 41 | eqeltrd |  |-  ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) | 
						
							| 43 | 1 4 5 42 | lecasei |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |