| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red |  | 
						
							| 2 |  | atandm2 |  | 
						
							| 3 | 2 | simp1bi |  | 
						
							| 4 | 3 | recld |  | 
						
							| 5 |  | atanlogaddlem |  | 
						
							| 6 |  | ax-1cn |  | 
						
							| 7 |  | ax-icn |  | 
						
							| 8 |  | mulcl |  | 
						
							| 9 | 7 3 8 | sylancr |  | 
						
							| 10 |  | addcl |  | 
						
							| 11 | 6 9 10 | sylancr |  | 
						
							| 12 | 2 | simp3bi |  | 
						
							| 13 | 11 12 | logcld |  | 
						
							| 14 |  | subcl |  | 
						
							| 15 | 6 9 14 | sylancr |  | 
						
							| 16 | 2 | simp2bi |  | 
						
							| 17 | 15 16 | logcld |  | 
						
							| 18 | 13 17 | addcomd |  | 
						
							| 19 |  | mulneg2 |  | 
						
							| 20 | 7 3 19 | sylancr |  | 
						
							| 21 | 20 | oveq2d |  | 
						
							| 22 |  | negsub |  | 
						
							| 23 | 6 9 22 | sylancr |  | 
						
							| 24 | 21 23 | eqtrd |  | 
						
							| 25 | 24 | fveq2d |  | 
						
							| 26 | 20 | oveq2d |  | 
						
							| 27 |  | subneg |  | 
						
							| 28 | 6 9 27 | sylancr |  | 
						
							| 29 | 26 28 | eqtrd |  | 
						
							| 30 | 29 | fveq2d |  | 
						
							| 31 | 25 30 | oveq12d |  | 
						
							| 32 | 18 31 | eqtr4d |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | atandmneg |  | 
						
							| 35 | 4 | le0neg1d |  | 
						
							| 36 | 35 | biimpa |  | 
						
							| 37 | 3 | renegd |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 36 38 | breqtrrd |  | 
						
							| 40 |  | atanlogaddlem |  | 
						
							| 41 | 34 39 40 | syl2an2r |  | 
						
							| 42 | 33 41 | eqeltrd |  | 
						
							| 43 | 1 4 5 42 | lecasei |  |