| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red | ⊢ ( 𝐴  ∈  dom  arctan  →  0  ∈  ℝ ) | 
						
							| 2 |  | atandm2 | ⊢ ( 𝐴  ∈  dom  arctan  ↔  ( 𝐴  ∈  ℂ  ∧  ( 1  −  ( i  ·  𝐴 ) )  ≠  0  ∧  ( 1  +  ( i  ·  𝐴 ) )  ≠  0 ) ) | 
						
							| 3 | 2 | simp1bi | ⊢ ( 𝐴  ∈  dom  arctan  →  𝐴  ∈  ℂ ) | 
						
							| 4 | 3 | recld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ℜ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 5 |  | atanlogaddlem | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  ≤  ( ℜ ‘ 𝐴 ) )  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ran  log ) | 
						
							| 6 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 7 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 8 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 9 | 7 3 8 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 10 |  | addcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( 1  +  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 11 | 6 9 10 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 12 | 2 | simp3bi | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( i  ·  𝐴 ) )  ≠  0 ) | 
						
							| 13 | 11 12 | logcld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 14 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( 1  −  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 15 | 6 9 14 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  −  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 16 | 2 | simp2bi | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  −  ( i  ·  𝐴 ) )  ≠  0 ) | 
						
							| 17 | 15 16 | logcld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 18 | 13 17 | addcomd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  =  ( ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) ) ) | 
						
							| 19 |  | mulneg2 | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  - 𝐴 )  =  - ( i  ·  𝐴 ) ) | 
						
							| 20 | 7 3 19 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( i  ·  - 𝐴 )  =  - ( i  ·  𝐴 ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( i  ·  - 𝐴 ) )  =  ( 1  +  - ( i  ·  𝐴 ) ) ) | 
						
							| 22 |  | negsub | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( 1  +  - ( i  ·  𝐴 ) )  =  ( 1  −  ( i  ·  𝐴 ) ) ) | 
						
							| 23 | 6 9 22 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  - ( i  ·  𝐴 ) )  =  ( 1  −  ( i  ·  𝐴 ) ) ) | 
						
							| 24 | 21 23 | eqtrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( i  ·  - 𝐴 ) )  =  ( 1  −  ( i  ·  𝐴 ) ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( log ‘ ( 1  +  ( i  ·  - 𝐴 ) ) )  =  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) | 
						
							| 26 | 20 | oveq2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  −  ( i  ·  - 𝐴 ) )  =  ( 1  −  - ( i  ·  𝐴 ) ) ) | 
						
							| 27 |  | subneg | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( 1  −  - ( i  ·  𝐴 ) )  =  ( 1  +  ( i  ·  𝐴 ) ) ) | 
						
							| 28 | 6 9 27 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  −  - ( i  ·  𝐴 ) )  =  ( 1  +  ( i  ·  𝐴 ) ) ) | 
						
							| 29 | 26 28 | eqtrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  −  ( i  ·  - 𝐴 ) )  =  ( 1  +  ( i  ·  𝐴 ) ) ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( log ‘ ( 1  −  ( i  ·  - 𝐴 ) ) )  =  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) ) | 
						
							| 31 | 25 30 | oveq12d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( log ‘ ( 1  +  ( i  ·  - 𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  - 𝐴 ) ) ) )  =  ( ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) ) ) | 
						
							| 32 | 18 31 | eqtr4d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  =  ( ( log ‘ ( 1  +  ( i  ·  - 𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  - 𝐴 ) ) ) ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  ( ℜ ‘ 𝐴 )  ≤  0 )  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  =  ( ( log ‘ ( 1  +  ( i  ·  - 𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  - 𝐴 ) ) ) ) ) | 
						
							| 34 |  | atandmneg | ⊢ ( 𝐴  ∈  dom  arctan  →  - 𝐴  ∈  dom  arctan ) | 
						
							| 35 | 4 | le0neg1d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ℜ ‘ 𝐴 )  ≤  0  ↔  0  ≤  - ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 36 | 35 | biimpa | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  ( ℜ ‘ 𝐴 )  ≤  0 )  →  0  ≤  - ( ℜ ‘ 𝐴 ) ) | 
						
							| 37 | 3 | renegd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ℜ ‘ - 𝐴 )  =  - ( ℜ ‘ 𝐴 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  ( ℜ ‘ 𝐴 )  ≤  0 )  →  ( ℜ ‘ - 𝐴 )  =  - ( ℜ ‘ 𝐴 ) ) | 
						
							| 39 | 36 38 | breqtrrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  ( ℜ ‘ 𝐴 )  ≤  0 )  →  0  ≤  ( ℜ ‘ - 𝐴 ) ) | 
						
							| 40 |  | atanlogaddlem | ⊢ ( ( - 𝐴  ∈  dom  arctan  ∧  0  ≤  ( ℜ ‘ - 𝐴 ) )  →  ( ( log ‘ ( 1  +  ( i  ·  - 𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  - 𝐴 ) ) ) )  ∈  ran  log ) | 
						
							| 41 | 34 39 40 | syl2an2r | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  ( ℜ ‘ 𝐴 )  ≤  0 )  →  ( ( log ‘ ( 1  +  ( i  ·  - 𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  - 𝐴 ) ) ) )  ∈  ran  log ) | 
						
							| 42 | 33 41 | eqeltrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  ( ℜ ‘ 𝐴 )  ≤  0 )  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ran  log ) | 
						
							| 43 | 1 4 5 42 | lecasei | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ran  log ) |