| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 2 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 3 |  | simpl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  𝐴  ∈  dom  arctan ) | 
						
							| 4 |  | atandm2 | ⊢ ( 𝐴  ∈  dom  arctan  ↔  ( 𝐴  ∈  ℂ  ∧  ( 1  −  ( i  ·  𝐴 ) )  ≠  0  ∧  ( 1  +  ( i  ·  𝐴 ) )  ≠  0 ) ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 𝐴  ∈  ℂ  ∧  ( 1  −  ( i  ·  𝐴 ) )  ≠  0  ∧  ( 1  +  ( i  ·  𝐴 ) )  ≠  0 ) ) | 
						
							| 6 | 5 | simp1d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 7 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 8 | 2 6 7 | sylancr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 9 |  | addcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( 1  +  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 10 | 1 8 9 | sylancr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 1  +  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 11 | 5 | simp3d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 1  +  ( i  ·  𝐴 ) )  ≠  0 ) | 
						
							| 12 | 10 11 | logcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 13 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( 1  −  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 14 | 1 8 13 | sylancr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 1  −  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 15 | 5 | simp2d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 1  −  ( i  ·  𝐴 ) )  ≠  0 ) | 
						
							| 16 | 14 15 | logcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 17 | 12 16 | imsubd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  −  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  −  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) ) ) | 
						
							| 18 | 2 | a1i | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  i  ∈  ℂ ) | 
						
							| 19 | 18 6 18 | subdid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( i  ·  ( 𝐴  −  i ) )  =  ( ( i  ·  𝐴 )  −  ( i  ·  i ) ) ) | 
						
							| 20 |  | ixi | ⊢ ( i  ·  i )  =  - 1 | 
						
							| 21 | 20 | oveq2i | ⊢ ( ( i  ·  𝐴 )  −  ( i  ·  i ) )  =  ( ( i  ·  𝐴 )  −  - 1 ) | 
						
							| 22 |  | subneg | ⊢ ( ( ( i  ·  𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( i  ·  𝐴 )  −  - 1 )  =  ( ( i  ·  𝐴 )  +  1 ) ) | 
						
							| 23 | 8 1 22 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( i  ·  𝐴 )  −  - 1 )  =  ( ( i  ·  𝐴 )  +  1 ) ) | 
						
							| 24 | 21 23 | eqtrid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( i  ·  𝐴 )  −  ( i  ·  i ) )  =  ( ( i  ·  𝐴 )  +  1 ) ) | 
						
							| 25 |  | addcom | ⊢ ( ( ( i  ·  𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( i  ·  𝐴 )  +  1 )  =  ( 1  +  ( i  ·  𝐴 ) ) ) | 
						
							| 26 | 8 1 25 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( i  ·  𝐴 )  +  1 )  =  ( 1  +  ( i  ·  𝐴 ) ) ) | 
						
							| 27 | 19 24 26 | 3eqtrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( i  ·  ( 𝐴  −  i ) )  =  ( 1  +  ( i  ·  𝐴 ) ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ ( i  ·  ( 𝐴  −  i ) ) )  =  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) ) | 
						
							| 29 |  | subcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( 𝐴  −  i )  ∈  ℂ ) | 
						
							| 30 | 6 2 29 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 𝐴  −  i )  ∈  ℂ ) | 
						
							| 31 |  | resub | ⊢ ( ( 𝐴  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( ℜ ‘ ( 𝐴  −  i ) )  =  ( ( ℜ ‘ 𝐴 )  −  ( ℜ ‘ i ) ) ) | 
						
							| 32 | 6 2 31 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ ( 𝐴  −  i ) )  =  ( ( ℜ ‘ 𝐴 )  −  ( ℜ ‘ i ) ) ) | 
						
							| 33 |  | rei | ⊢ ( ℜ ‘ i )  =  0 | 
						
							| 34 | 33 | oveq2i | ⊢ ( ( ℜ ‘ 𝐴 )  −  ( ℜ ‘ i ) )  =  ( ( ℜ ‘ 𝐴 )  −  0 ) | 
						
							| 35 | 6 | recld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 36 | 35 | recnd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 37 | 36 | subid1d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℜ ‘ 𝐴 )  −  0 )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 38 | 34 37 | eqtrid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℜ ‘ 𝐴 )  −  ( ℜ ‘ i ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 39 | 32 38 | eqtrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ ( 𝐴  −  i ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 40 |  | gt0ne0 | ⊢ ( ( ( ℜ ‘ 𝐴 )  ∈  ℝ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ 𝐴 )  ≠  0 ) | 
						
							| 41 | 35 40 | sylancom | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ 𝐴 )  ≠  0 ) | 
						
							| 42 | 39 41 | eqnetrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ ( 𝐴  −  i ) )  ≠  0 ) | 
						
							| 43 |  | fveq2 | ⊢ ( ( 𝐴  −  i )  =  0  →  ( ℜ ‘ ( 𝐴  −  i ) )  =  ( ℜ ‘ 0 ) ) | 
						
							| 44 |  | re0 | ⊢ ( ℜ ‘ 0 )  =  0 | 
						
							| 45 | 43 44 | eqtrdi | ⊢ ( ( 𝐴  −  i )  =  0  →  ( ℜ ‘ ( 𝐴  −  i ) )  =  0 ) | 
						
							| 46 | 45 | necon3i | ⊢ ( ( ℜ ‘ ( 𝐴  −  i ) )  ≠  0  →  ( 𝐴  −  i )  ≠  0 ) | 
						
							| 47 | 42 46 | syl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 𝐴  −  i )  ≠  0 ) | 
						
							| 48 |  | simpr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  <  ( ℜ ‘ 𝐴 ) ) | 
						
							| 49 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 50 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  ( ℜ ‘ 𝐴 )  ∈  ℝ )  →  ( 0  <  ( ℜ ‘ 𝐴 )  →  0  ≤  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 51 | 49 35 50 | sylancr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 0  <  ( ℜ ‘ 𝐴 )  →  0  ≤  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 52 | 48 51 | mpd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  ≤  ( ℜ ‘ 𝐴 ) ) | 
						
							| 53 | 52 39 | breqtrrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  ≤  ( ℜ ‘ ( 𝐴  −  i ) ) ) | 
						
							| 54 |  | logimul | ⊢ ( ( ( 𝐴  −  i )  ∈  ℂ  ∧  ( 𝐴  −  i )  ≠  0  ∧  0  ≤  ( ℜ ‘ ( 𝐴  −  i ) ) )  →  ( log ‘ ( i  ·  ( 𝐴  −  i ) ) )  =  ( ( log ‘ ( 𝐴  −  i ) )  +  ( i  ·  ( π  /  2 ) ) ) ) | 
						
							| 55 | 30 47 53 54 | syl3anc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ ( i  ·  ( 𝐴  −  i ) ) )  =  ( ( log ‘ ( 𝐴  −  i ) )  +  ( i  ·  ( π  /  2 ) ) ) ) | 
						
							| 56 | 28 55 | eqtr3d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  =  ( ( log ‘ ( 𝐴  −  i ) )  +  ( i  ·  ( π  /  2 ) ) ) ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  =  ( ℑ ‘ ( ( log ‘ ( 𝐴  −  i ) )  +  ( i  ·  ( π  /  2 ) ) ) ) ) | 
						
							| 58 | 30 47 | logcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ ( 𝐴  −  i ) )  ∈  ℂ ) | 
						
							| 59 |  | halfpire | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 60 | 59 | recni | ⊢ ( π  /  2 )  ∈  ℂ | 
						
							| 61 | 2 60 | mulcli | ⊢ ( i  ·  ( π  /  2 ) )  ∈  ℂ | 
						
							| 62 |  | imadd | ⊢ ( ( ( log ‘ ( 𝐴  −  i ) )  ∈  ℂ  ∧  ( i  ·  ( π  /  2 ) )  ∈  ℂ )  →  ( ℑ ‘ ( ( log ‘ ( 𝐴  −  i ) )  +  ( i  ·  ( π  /  2 ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  +  ( ℑ ‘ ( i  ·  ( π  /  2 ) ) ) ) ) | 
						
							| 63 | 58 61 62 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( ( log ‘ ( 𝐴  −  i ) )  +  ( i  ·  ( π  /  2 ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  +  ( ℑ ‘ ( i  ·  ( π  /  2 ) ) ) ) ) | 
						
							| 64 |  | reim | ⊢ ( ( π  /  2 )  ∈  ℂ  →  ( ℜ ‘ ( π  /  2 ) )  =  ( ℑ ‘ ( i  ·  ( π  /  2 ) ) ) ) | 
						
							| 65 | 60 64 | ax-mp | ⊢ ( ℜ ‘ ( π  /  2 ) )  =  ( ℑ ‘ ( i  ·  ( π  /  2 ) ) ) | 
						
							| 66 |  | rere | ⊢ ( ( π  /  2 )  ∈  ℝ  →  ( ℜ ‘ ( π  /  2 ) )  =  ( π  /  2 ) ) | 
						
							| 67 | 59 66 | ax-mp | ⊢ ( ℜ ‘ ( π  /  2 ) )  =  ( π  /  2 ) | 
						
							| 68 | 65 67 | eqtr3i | ⊢ ( ℑ ‘ ( i  ·  ( π  /  2 ) ) )  =  ( π  /  2 ) | 
						
							| 69 | 68 | oveq2i | ⊢ ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  +  ( ℑ ‘ ( i  ·  ( π  /  2 ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  +  ( π  /  2 ) ) | 
						
							| 70 | 63 69 | eqtrdi | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( ( log ‘ ( 𝐴  −  i ) )  +  ( i  ·  ( π  /  2 ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  +  ( π  /  2 ) ) ) | 
						
							| 71 | 57 70 | eqtrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  +  ( π  /  2 ) ) ) | 
						
							| 72 |  | addcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( 𝐴  +  i )  ∈  ℂ ) | 
						
							| 73 | 6 2 72 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 𝐴  +  i )  ∈  ℂ ) | 
						
							| 74 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  ( 𝐴  +  i )  ∈  ℂ )  →  ( i  ·  ( 𝐴  +  i ) )  ∈  ℂ ) | 
						
							| 75 | 2 73 74 | sylancr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( i  ·  ( 𝐴  +  i ) )  ∈  ℂ ) | 
						
							| 76 |  | reim | ⊢ ( ( 𝐴  +  i )  ∈  ℂ  →  ( ℜ ‘ ( 𝐴  +  i ) )  =  ( ℑ ‘ ( i  ·  ( 𝐴  +  i ) ) ) ) | 
						
							| 77 | 73 76 | syl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ ( 𝐴  +  i ) )  =  ( ℑ ‘ ( i  ·  ( 𝐴  +  i ) ) ) ) | 
						
							| 78 |  | readd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( ℜ ‘ ( 𝐴  +  i ) )  =  ( ( ℜ ‘ 𝐴 )  +  ( ℜ ‘ i ) ) ) | 
						
							| 79 | 6 2 78 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ ( 𝐴  +  i ) )  =  ( ( ℜ ‘ 𝐴 )  +  ( ℜ ‘ i ) ) ) | 
						
							| 80 | 33 | oveq2i | ⊢ ( ( ℜ ‘ 𝐴 )  +  ( ℜ ‘ i ) )  =  ( ( ℜ ‘ 𝐴 )  +  0 ) | 
						
							| 81 | 36 | addridd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℜ ‘ 𝐴 )  +  0 )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 82 | 80 81 | eqtrid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℜ ‘ 𝐴 )  +  ( ℜ ‘ i ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 83 | 79 82 | eqtrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ ( 𝐴  +  i ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 84 | 77 83 | eqtr3d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( i  ·  ( 𝐴  +  i ) ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 85 | 48 84 | breqtrrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  <  ( ℑ ‘ ( i  ·  ( 𝐴  +  i ) ) ) ) | 
						
							| 86 |  | logneg2 | ⊢ ( ( ( i  ·  ( 𝐴  +  i ) )  ∈  ℂ  ∧  0  <  ( ℑ ‘ ( i  ·  ( 𝐴  +  i ) ) ) )  →  ( log ‘ - ( i  ·  ( 𝐴  +  i ) ) )  =  ( ( log ‘ ( i  ·  ( 𝐴  +  i ) ) )  −  ( i  ·  π ) ) ) | 
						
							| 87 | 75 85 86 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ - ( i  ·  ( 𝐴  +  i ) ) )  =  ( ( log ‘ ( i  ·  ( 𝐴  +  i ) ) )  −  ( i  ·  π ) ) ) | 
						
							| 88 | 18 6 18 | adddid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( i  ·  ( 𝐴  +  i ) )  =  ( ( i  ·  𝐴 )  +  ( i  ·  i ) ) ) | 
						
							| 89 | 20 | oveq2i | ⊢ ( ( i  ·  𝐴 )  +  ( i  ·  i ) )  =  ( ( i  ·  𝐴 )  +  - 1 ) | 
						
							| 90 |  | negsub | ⊢ ( ( ( i  ·  𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( i  ·  𝐴 )  +  - 1 )  =  ( ( i  ·  𝐴 )  −  1 ) ) | 
						
							| 91 | 8 1 90 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( i  ·  𝐴 )  +  - 1 )  =  ( ( i  ·  𝐴 )  −  1 ) ) | 
						
							| 92 | 89 91 | eqtrid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( i  ·  𝐴 )  +  ( i  ·  i ) )  =  ( ( i  ·  𝐴 )  −  1 ) ) | 
						
							| 93 | 88 92 | eqtrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( i  ·  ( 𝐴  +  i ) )  =  ( ( i  ·  𝐴 )  −  1 ) ) | 
						
							| 94 | 93 | negeqd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - ( i  ·  ( 𝐴  +  i ) )  =  - ( ( i  ·  𝐴 )  −  1 ) ) | 
						
							| 95 |  | negsubdi2 | ⊢ ( ( ( i  ·  𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  - ( ( i  ·  𝐴 )  −  1 )  =  ( 1  −  ( i  ·  𝐴 ) ) ) | 
						
							| 96 | 8 1 95 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - ( ( i  ·  𝐴 )  −  1 )  =  ( 1  −  ( i  ·  𝐴 ) ) ) | 
						
							| 97 | 94 96 | eqtrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - ( i  ·  ( 𝐴  +  i ) )  =  ( 1  −  ( i  ·  𝐴 ) ) ) | 
						
							| 98 | 97 | fveq2d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ - ( i  ·  ( 𝐴  +  i ) ) )  =  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) | 
						
							| 99 | 83 41 | eqnetrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ ( 𝐴  +  i ) )  ≠  0 ) | 
						
							| 100 |  | fveq2 | ⊢ ( ( 𝐴  +  i )  =  0  →  ( ℜ ‘ ( 𝐴  +  i ) )  =  ( ℜ ‘ 0 ) ) | 
						
							| 101 | 100 44 | eqtrdi | ⊢ ( ( 𝐴  +  i )  =  0  →  ( ℜ ‘ ( 𝐴  +  i ) )  =  0 ) | 
						
							| 102 | 101 | necon3i | ⊢ ( ( ℜ ‘ ( 𝐴  +  i ) )  ≠  0  →  ( 𝐴  +  i )  ≠  0 ) | 
						
							| 103 | 99 102 | syl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 𝐴  +  i )  ≠  0 ) | 
						
							| 104 | 73 103 | logcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ ( 𝐴  +  i ) )  ∈  ℂ ) | 
						
							| 105 | 61 | a1i | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( i  ·  ( π  /  2 ) )  ∈  ℂ ) | 
						
							| 106 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 107 | 2 106 | mulcli | ⊢ ( i  ·  π )  ∈  ℂ | 
						
							| 108 | 107 | a1i | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( i  ·  π )  ∈  ℂ ) | 
						
							| 109 | 52 83 | breqtrrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  ≤  ( ℜ ‘ ( 𝐴  +  i ) ) ) | 
						
							| 110 |  | logimul | ⊢ ( ( ( 𝐴  +  i )  ∈  ℂ  ∧  ( 𝐴  +  i )  ≠  0  ∧  0  ≤  ( ℜ ‘ ( 𝐴  +  i ) ) )  →  ( log ‘ ( i  ·  ( 𝐴  +  i ) ) )  =  ( ( log ‘ ( 𝐴  +  i ) )  +  ( i  ·  ( π  /  2 ) ) ) ) | 
						
							| 111 | 73 103 109 110 | syl3anc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ ( i  ·  ( 𝐴  +  i ) ) )  =  ( ( log ‘ ( 𝐴  +  i ) )  +  ( i  ·  ( π  /  2 ) ) ) ) | 
						
							| 112 | 111 | oveq1d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( log ‘ ( i  ·  ( 𝐴  +  i ) ) )  −  ( i  ·  π ) )  =  ( ( ( log ‘ ( 𝐴  +  i ) )  +  ( i  ·  ( π  /  2 ) ) )  −  ( i  ·  π ) ) ) | 
						
							| 113 | 104 105 108 112 | assraddsubd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( log ‘ ( i  ·  ( 𝐴  +  i ) ) )  −  ( i  ·  π ) )  =  ( ( log ‘ ( 𝐴  +  i ) )  +  ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) ) ) ) | 
						
							| 114 | 87 98 113 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  =  ( ( log ‘ ( 𝐴  +  i ) )  +  ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) ) ) ) | 
						
							| 115 | 114 | fveq2d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  =  ( ℑ ‘ ( ( log ‘ ( 𝐴  +  i ) )  +  ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) ) ) ) ) | 
						
							| 116 | 61 107 | subcli | ⊢ ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) )  ∈  ℂ | 
						
							| 117 |  | imadd | ⊢ ( ( ( log ‘ ( 𝐴  +  i ) )  ∈  ℂ  ∧  ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) )  ∈  ℂ )  →  ( ℑ ‘ ( ( log ‘ ( 𝐴  +  i ) )  +  ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  +  ( ℑ ‘ ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) ) ) ) ) | 
						
							| 118 | 104 116 117 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( ( log ‘ ( 𝐴  +  i ) )  +  ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  +  ( ℑ ‘ ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) ) ) ) ) | 
						
							| 119 |  | imsub | ⊢ ( ( ( i  ·  ( π  /  2 ) )  ∈  ℂ  ∧  ( i  ·  π )  ∈  ℂ )  →  ( ℑ ‘ ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) ) )  =  ( ( ℑ ‘ ( i  ·  ( π  /  2 ) ) )  −  ( ℑ ‘ ( i  ·  π ) ) ) ) | 
						
							| 120 | 61 107 119 | mp2an | ⊢ ( ℑ ‘ ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) ) )  =  ( ( ℑ ‘ ( i  ·  ( π  /  2 ) ) )  −  ( ℑ ‘ ( i  ·  π ) ) ) | 
						
							| 121 |  | reim | ⊢ ( π  ∈  ℂ  →  ( ℜ ‘ π )  =  ( ℑ ‘ ( i  ·  π ) ) ) | 
						
							| 122 | 106 121 | ax-mp | ⊢ ( ℜ ‘ π )  =  ( ℑ ‘ ( i  ·  π ) ) | 
						
							| 123 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 124 |  | rere | ⊢ ( π  ∈  ℝ  →  ( ℜ ‘ π )  =  π ) | 
						
							| 125 | 123 124 | ax-mp | ⊢ ( ℜ ‘ π )  =  π | 
						
							| 126 | 122 125 | eqtr3i | ⊢ ( ℑ ‘ ( i  ·  π ) )  =  π | 
						
							| 127 | 68 126 | oveq12i | ⊢ ( ( ℑ ‘ ( i  ·  ( π  /  2 ) ) )  −  ( ℑ ‘ ( i  ·  π ) ) )  =  ( ( π  /  2 )  −  π ) | 
						
							| 128 | 60 | negcli | ⊢ - ( π  /  2 )  ∈  ℂ | 
						
							| 129 | 106 60 | negsubi | ⊢ ( π  +  - ( π  /  2 ) )  =  ( π  −  ( π  /  2 ) ) | 
						
							| 130 |  | pidiv2halves | ⊢ ( ( π  /  2 )  +  ( π  /  2 ) )  =  π | 
						
							| 131 | 106 60 60 130 | subaddrii | ⊢ ( π  −  ( π  /  2 ) )  =  ( π  /  2 ) | 
						
							| 132 | 129 131 | eqtri | ⊢ ( π  +  - ( π  /  2 ) )  =  ( π  /  2 ) | 
						
							| 133 | 60 106 128 132 | subaddrii | ⊢ ( ( π  /  2 )  −  π )  =  - ( π  /  2 ) | 
						
							| 134 | 120 127 133 | 3eqtri | ⊢ ( ℑ ‘ ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) ) )  =  - ( π  /  2 ) | 
						
							| 135 | 134 | oveq2i | ⊢ ( ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  +  ( ℑ ‘ ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  +  - ( π  /  2 ) ) | 
						
							| 136 | 118 135 | eqtrdi | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( ( log ‘ ( 𝐴  +  i ) )  +  ( ( i  ·  ( π  /  2 ) )  −  ( i  ·  π ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  +  - ( π  /  2 ) ) ) | 
						
							| 137 | 115 136 | eqtrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  +  - ( π  /  2 ) ) ) | 
						
							| 138 | 71 137 | oveq12d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  −  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  =  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  +  ( π  /  2 ) )  −  ( ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  +  - ( π  /  2 ) ) ) ) | 
						
							| 139 | 58 | imcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  ∈  ℝ ) | 
						
							| 140 | 139 | recnd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  ∈  ℂ ) | 
						
							| 141 | 60 | a1i | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( π  /  2 )  ∈  ℂ ) | 
						
							| 142 | 104 | imcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ∈  ℝ ) | 
						
							| 143 | 142 | recnd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ∈  ℂ ) | 
						
							| 144 | 128 | a1i | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - ( π  /  2 )  ∈  ℂ ) | 
						
							| 145 | 140 141 143 144 | addsub4d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  +  ( π  /  2 ) )  −  ( ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  +  - ( π  /  2 ) ) )  =  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  ( ( π  /  2 )  −  - ( π  /  2 ) ) ) ) | 
						
							| 146 | 60 60 | subnegi | ⊢ ( ( π  /  2 )  −  - ( π  /  2 ) )  =  ( ( π  /  2 )  +  ( π  /  2 ) ) | 
						
							| 147 | 146 130 | eqtri | ⊢ ( ( π  /  2 )  −  - ( π  /  2 ) )  =  π | 
						
							| 148 | 147 | oveq2i | ⊢ ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  ( ( π  /  2 )  −  - ( π  /  2 ) ) )  =  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π ) | 
						
							| 149 | 145 148 | eqtrdi | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  +  ( π  /  2 ) )  −  ( ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  +  - ( π  /  2 ) ) )  =  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π ) ) | 
						
							| 150 | 17 138 149 | 3eqtrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  −  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  =  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π ) ) | 
						
							| 151 | 139 142 | resubcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  ∈  ℝ ) | 
						
							| 152 |  | readdcl | ⊢ ( ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  ∈  ℝ ) | 
						
							| 153 | 151 123 152 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  ∈  ℝ ) | 
						
							| 154 | 123 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 155 | 154 | recni | ⊢ - π  ∈  ℂ | 
						
							| 156 | 155 106 | negsubi | ⊢ ( - π  +  - π )  =  ( - π  −  π ) | 
						
							| 157 | 154 | a1i | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - π  ∈  ℝ ) | 
						
							| 158 | 142 | renegcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ∈  ℝ ) | 
						
							| 159 | 30 47 | logimcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( - π  <  ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  ∧  ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  ≤  π ) ) | 
						
							| 160 | 159 | simpld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - π  <  ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) ) ) | 
						
							| 161 | 73 103 | logimcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( - π  <  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ∧  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ≤  π ) ) | 
						
							| 162 | 161 | simprd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ≤  π ) | 
						
							| 163 |  | leneg | ⊢ ( ( ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ≤  π  ↔  - π  ≤  - ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) ) | 
						
							| 164 | 142 123 163 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ≤  π  ↔  - π  ≤  - ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) ) | 
						
							| 165 | 162 164 | mpbid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - π  ≤  - ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) | 
						
							| 166 | 157 157 139 158 160 165 | ltleaddd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( - π  +  - π )  <  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  +  - ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) ) | 
						
							| 167 | 140 143 | negsubd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  +  - ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) ) | 
						
							| 168 | 166 167 | breqtrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( - π  +  - π )  <  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) ) | 
						
							| 169 | 156 168 | eqbrtrrid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( - π  −  π )  <  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) ) | 
						
							| 170 | 123 | a1i | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  π  ∈  ℝ ) | 
						
							| 171 | 157 170 151 | ltsubaddd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( - π  −  π )  <  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  ↔  - π  <  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π ) ) ) | 
						
							| 172 | 169 171 | mpbid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - π  <  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π ) ) | 
						
							| 173 |  | 0red | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  ∈  ℝ ) | 
						
							| 174 | 6 | imcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 175 |  | peano2rem | ⊢ ( ( ℑ ‘ 𝐴 )  ∈  ℝ  →  ( ( ℑ ‘ 𝐴 )  −  1 )  ∈  ℝ ) | 
						
							| 176 | 174 175 | syl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ 𝐴 )  −  1 )  ∈  ℝ ) | 
						
							| 177 |  | peano2re | ⊢ ( ( ℑ ‘ 𝐴 )  ∈  ℝ  →  ( ( ℑ ‘ 𝐴 )  +  1 )  ∈  ℝ ) | 
						
							| 178 | 174 177 | syl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ 𝐴 )  +  1 )  ∈  ℝ ) | 
						
							| 179 | 174 | ltm1d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ 𝐴 )  −  1 )  <  ( ℑ ‘ 𝐴 ) ) | 
						
							| 180 | 174 | ltp1d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ 𝐴 )  <  ( ( ℑ ‘ 𝐴 )  +  1 ) ) | 
						
							| 181 | 176 174 178 179 180 | lttrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ 𝐴 )  −  1 )  <  ( ( ℑ ‘ 𝐴 )  +  1 ) ) | 
						
							| 182 |  | ltdiv1 | ⊢ ( ( ( ( ℑ ‘ 𝐴 )  −  1 )  ∈  ℝ  ∧  ( ( ℑ ‘ 𝐴 )  +  1 )  ∈  ℝ  ∧  ( ( ℜ ‘ 𝐴 )  ∈  ℝ  ∧  0  <  ( ℜ ‘ 𝐴 ) ) )  →  ( ( ( ℑ ‘ 𝐴 )  −  1 )  <  ( ( ℑ ‘ 𝐴 )  +  1 )  ↔  ( ( ( ℑ ‘ 𝐴 )  −  1 )  /  ( ℜ ‘ 𝐴 ) )  <  ( ( ( ℑ ‘ 𝐴 )  +  1 )  /  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 183 | 176 178 35 48 182 | syl112anc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ( ℑ ‘ 𝐴 )  −  1 )  <  ( ( ℑ ‘ 𝐴 )  +  1 )  ↔  ( ( ( ℑ ‘ 𝐴 )  −  1 )  /  ( ℜ ‘ 𝐴 ) )  <  ( ( ( ℑ ‘ 𝐴 )  +  1 )  /  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 184 | 181 183 | mpbid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ( ℑ ‘ 𝐴 )  −  1 )  /  ( ℜ ‘ 𝐴 ) )  <  ( ( ( ℑ ‘ 𝐴 )  +  1 )  /  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 185 |  | imsub | ⊢ ( ( 𝐴  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( ℑ ‘ ( 𝐴  −  i ) )  =  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ i ) ) ) | 
						
							| 186 | 6 2 185 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 𝐴  −  i ) )  =  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ i ) ) ) | 
						
							| 187 |  | imi | ⊢ ( ℑ ‘ i )  =  1 | 
						
							| 188 | 187 | oveq2i | ⊢ ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ i ) )  =  ( ( ℑ ‘ 𝐴 )  −  1 ) | 
						
							| 189 | 186 188 | eqtrdi | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 𝐴  −  i ) )  =  ( ( ℑ ‘ 𝐴 )  −  1 ) ) | 
						
							| 190 | 189 39 | oveq12d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( 𝐴  −  i ) )  /  ( ℜ ‘ ( 𝐴  −  i ) ) )  =  ( ( ( ℑ ‘ 𝐴 )  −  1 )  /  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 191 |  | imadd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( ℑ ‘ ( 𝐴  +  i ) )  =  ( ( ℑ ‘ 𝐴 )  +  ( ℑ ‘ i ) ) ) | 
						
							| 192 | 6 2 191 | sylancl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 𝐴  +  i ) )  =  ( ( ℑ ‘ 𝐴 )  +  ( ℑ ‘ i ) ) ) | 
						
							| 193 | 187 | oveq2i | ⊢ ( ( ℑ ‘ 𝐴 )  +  ( ℑ ‘ i ) )  =  ( ( ℑ ‘ 𝐴 )  +  1 ) | 
						
							| 194 | 192 193 | eqtrdi | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 𝐴  +  i ) )  =  ( ( ℑ ‘ 𝐴 )  +  1 ) ) | 
						
							| 195 | 194 83 | oveq12d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( 𝐴  +  i ) )  /  ( ℜ ‘ ( 𝐴  +  i ) ) )  =  ( ( ( ℑ ‘ 𝐴 )  +  1 )  /  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 196 | 184 190 195 | 3brtr4d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( 𝐴  −  i ) )  /  ( ℜ ‘ ( 𝐴  −  i ) ) )  <  ( ( ℑ ‘ ( 𝐴  +  i ) )  /  ( ℜ ‘ ( 𝐴  +  i ) ) ) ) | 
						
							| 197 |  | tanarg | ⊢ ( ( ( 𝐴  −  i )  ∈  ℂ  ∧  ( ℜ ‘ ( 𝐴  −  i ) )  ≠  0 )  →  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) ) )  =  ( ( ℑ ‘ ( 𝐴  −  i ) )  /  ( ℜ ‘ ( 𝐴  −  i ) ) ) ) | 
						
							| 198 | 30 42 197 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) ) )  =  ( ( ℑ ‘ ( 𝐴  −  i ) )  /  ( ℜ ‘ ( 𝐴  −  i ) ) ) ) | 
						
							| 199 |  | tanarg | ⊢ ( ( ( 𝐴  +  i )  ∈  ℂ  ∧  ( ℜ ‘ ( 𝐴  +  i ) )  ≠  0 )  →  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  =  ( ( ℑ ‘ ( 𝐴  +  i ) )  /  ( ℜ ‘ ( 𝐴  +  i ) ) ) ) | 
						
							| 200 | 73 99 199 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  =  ( ( ℑ ‘ ( 𝐴  +  i ) )  /  ( ℜ ‘ ( 𝐴  +  i ) ) ) ) | 
						
							| 201 | 196 198 200 | 3brtr4d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) ) )  <  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) ) | 
						
							| 202 | 48 39 | breqtrrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  <  ( ℜ ‘ ( 𝐴  −  i ) ) ) | 
						
							| 203 |  | argregt0 | ⊢ ( ( ( 𝐴  −  i )  ∈  ℂ  ∧  0  <  ( ℜ ‘ ( 𝐴  −  i ) ) )  →  ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 204 | 30 202 203 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 205 | 48 83 | breqtrrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  <  ( ℜ ‘ ( 𝐴  +  i ) ) ) | 
						
							| 206 |  | argregt0 | ⊢ ( ( ( 𝐴  +  i )  ∈  ℂ  ∧  0  <  ( ℜ ‘ ( 𝐴  +  i ) ) )  →  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 207 | 73 205 206 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 208 |  | tanord | ⊢ ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  →  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  <  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ↔  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) ) )  <  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) ) ) | 
						
							| 209 | 204 207 208 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  <  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) )  ↔  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) ) )  <  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) ) ) | 
						
							| 210 | 201 209 | mpbird | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  <  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) | 
						
							| 211 | 143 | addlidd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 0  +  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  =  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) | 
						
							| 212 | 210 211 | breqtrrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  <  ( 0  +  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) ) | 
						
							| 213 | 139 142 173 | ltsubaddd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  <  0  ↔  ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  <  ( 0  +  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) ) ) ) | 
						
							| 214 | 212 213 | mpbird | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  <  0 ) | 
						
							| 215 | 151 173 170 214 | ltadd1dd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  <  ( 0  +  π ) ) | 
						
							| 216 | 106 | addlidi | ⊢ ( 0  +  π )  =  π | 
						
							| 217 | 215 216 | breqtrdi | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  <  π ) | 
						
							| 218 | 154 | rexri | ⊢ - π  ∈  ℝ* | 
						
							| 219 | 123 | rexri | ⊢ π  ∈  ℝ* | 
						
							| 220 |  | elioo2 | ⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ* )  →  ( ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  ∈  ( - π (,) π )  ↔  ( ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  ∈  ℝ  ∧  - π  <  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  ∧  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  <  π ) ) ) | 
						
							| 221 | 218 219 220 | mp2an | ⊢ ( ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  ∈  ( - π (,) π )  ↔  ( ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  ∈  ℝ  ∧  - π  <  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  ∧  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  <  π ) ) | 
						
							| 222 | 153 172 217 221 | syl3anbrc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ( ℑ ‘ ( log ‘ ( 𝐴  −  i ) ) )  −  ( ℑ ‘ ( log ‘ ( 𝐴  +  i ) ) ) )  +  π )  ∈  ( - π (,) π ) ) | 
						
							| 223 | 150 222 | eqeltrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  −  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  ∈  ( - π (,) π ) ) |