Metamath Proof Explorer


Theorem atanlogsublem

Description: Lemma for atanlogsub . (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion atanlogsublem Adomarctan0<Alog1+iAlog1iAππ

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 ax-icn i
3 simpl Adomarctan0<AAdomarctan
4 atandm2 AdomarctanA1iA01+iA0
5 3 4 sylib Adomarctan0<AA1iA01+iA0
6 5 simp1d Adomarctan0<AA
7 mulcl iAiA
8 2 6 7 sylancr Adomarctan0<AiA
9 addcl 1iA1+iA
10 1 8 9 sylancr Adomarctan0<A1+iA
11 5 simp3d Adomarctan0<A1+iA0
12 10 11 logcld Adomarctan0<Alog1+iA
13 subcl 1iA1iA
14 1 8 13 sylancr Adomarctan0<A1iA
15 5 simp2d Adomarctan0<A1iA0
16 14 15 logcld Adomarctan0<Alog1iA
17 12 16 imsubd Adomarctan0<Alog1+iAlog1iA=log1+iAlog1iA
18 2 a1i Adomarctan0<Ai
19 18 6 18 subdid Adomarctan0<AiAi=iAii
20 ixi ii=1
21 20 oveq2i iAii=iA-1
22 subneg iA1iA-1=iA+1
23 8 1 22 sylancl Adomarctan0<AiA-1=iA+1
24 21 23 eqtrid Adomarctan0<AiAii=iA+1
25 addcom iA1iA+1=1+iA
26 8 1 25 sylancl Adomarctan0<AiA+1=1+iA
27 19 24 26 3eqtrd Adomarctan0<AiAi=1+iA
28 27 fveq2d Adomarctan0<AlogiAi=log1+iA
29 subcl AiAi
30 6 2 29 sylancl Adomarctan0<AAi
31 resub AiAi=Ai
32 6 2 31 sylancl Adomarctan0<AAi=Ai
33 rei i=0
34 33 oveq2i Ai=A0
35 6 recld Adomarctan0<AA
36 35 recnd Adomarctan0<AA
37 36 subid1d Adomarctan0<AA0=A
38 34 37 eqtrid Adomarctan0<AAi=A
39 32 38 eqtrd Adomarctan0<AAi=A
40 gt0ne0 A0<AA0
41 35 40 sylancom Adomarctan0<AA0
42 39 41 eqnetrd Adomarctan0<AAi0
43 fveq2 Ai=0Ai=0
44 re0 0=0
45 43 44 eqtrdi Ai=0Ai=0
46 45 necon3i Ai0Ai0
47 42 46 syl Adomarctan0<AAi0
48 simpr Adomarctan0<A0<A
49 0re 0
50 ltle 0A0<A0A
51 49 35 50 sylancr Adomarctan0<A0<A0A
52 48 51 mpd Adomarctan0<A0A
53 52 39 breqtrrd Adomarctan0<A0Ai
54 logimul AiAi00AilogiAi=logAi+iπ2
55 30 47 53 54 syl3anc Adomarctan0<AlogiAi=logAi+iπ2
56 28 55 eqtr3d Adomarctan0<Alog1+iA=logAi+iπ2
57 56 fveq2d Adomarctan0<Alog1+iA=logAi+iπ2
58 30 47 logcld Adomarctan0<AlogAi
59 halfpire π2
60 59 recni π2
61 2 60 mulcli iπ2
62 imadd logAiiπ2logAi+iπ2=logAi+iπ2
63 58 61 62 sylancl Adomarctan0<AlogAi+iπ2=logAi+iπ2
64 reim π2π2=iπ2
65 60 64 ax-mp π2=iπ2
66 rere π2π2=π2
67 59 66 ax-mp π2=π2
68 65 67 eqtr3i iπ2=π2
69 68 oveq2i logAi+iπ2=logAi+π2
70 63 69 eqtrdi Adomarctan0<AlogAi+iπ2=logAi+π2
71 57 70 eqtrd Adomarctan0<Alog1+iA=logAi+π2
72 addcl AiA+i
73 6 2 72 sylancl Adomarctan0<AA+i
74 mulcl iA+iiA+i
75 2 73 74 sylancr Adomarctan0<AiA+i
76 reim A+iA+i=iA+i
77 73 76 syl Adomarctan0<AA+i=iA+i
78 readd AiA+i=A+i
79 6 2 78 sylancl Adomarctan0<AA+i=A+i
80 33 oveq2i A+i=A+0
81 36 addridd Adomarctan0<AA+0=A
82 80 81 eqtrid Adomarctan0<AA+i=A
83 79 82 eqtrd Adomarctan0<AA+i=A
84 77 83 eqtr3d Adomarctan0<AiA+i=A
85 48 84 breqtrrd Adomarctan0<A0<iA+i
86 logneg2 iA+i0<iA+ilogiA+i=logiA+iiπ
87 75 85 86 syl2anc Adomarctan0<AlogiA+i=logiA+iiπ
88 18 6 18 adddid Adomarctan0<AiA+i=iA+ii
89 20 oveq2i iA+ii=iA+-1
90 negsub iA1iA+-1=iA1
91 8 1 90 sylancl Adomarctan0<AiA+-1=iA1
92 89 91 eqtrid Adomarctan0<AiA+ii=iA1
93 88 92 eqtrd Adomarctan0<AiA+i=iA1
94 93 negeqd Adomarctan0<AiA+i=iA1
95 negsubdi2 iA1iA1=1iA
96 8 1 95 sylancl Adomarctan0<AiA1=1iA
97 94 96 eqtrd Adomarctan0<AiA+i=1iA
98 97 fveq2d Adomarctan0<AlogiA+i=log1iA
99 83 41 eqnetrd Adomarctan0<AA+i0
100 fveq2 A+i=0A+i=0
101 100 44 eqtrdi A+i=0A+i=0
102 101 necon3i A+i0A+i0
103 99 102 syl Adomarctan0<AA+i0
104 73 103 logcld Adomarctan0<AlogA+i
105 61 a1i Adomarctan0<Aiπ2
106 picn π
107 2 106 mulcli iπ
108 107 a1i Adomarctan0<Aiπ
109 52 83 breqtrrd Adomarctan0<A0A+i
110 logimul A+iA+i00A+ilogiA+i=logA+i+iπ2
111 73 103 109 110 syl3anc Adomarctan0<AlogiA+i=logA+i+iπ2
112 111 oveq1d Adomarctan0<AlogiA+iiπ=logA+i+iπ2-iπ
113 104 105 108 112 assraddsubd Adomarctan0<AlogiA+iiπ=logA+i+iπ2-iπ
114 87 98 113 3eqtr3d Adomarctan0<Alog1iA=logA+i+iπ2-iπ
115 114 fveq2d Adomarctan0<Alog1iA=logA+i+iπ2-iπ
116 61 107 subcli iπ2iπ
117 imadd logA+iiπ2iπlogA+i+iπ2-iπ=logA+i+iπ2iπ
118 104 116 117 sylancl Adomarctan0<AlogA+i+iπ2-iπ=logA+i+iπ2iπ
119 imsub iπ2iπiπ2iπ=iπ2iπ
120 61 107 119 mp2an iπ2iπ=iπ2iπ
121 reim ππ=iπ
122 106 121 ax-mp π=iπ
123 pire π
124 rere ππ=π
125 123 124 ax-mp π=π
126 122 125 eqtr3i iπ=π
127 68 126 oveq12i iπ2iπ=π2π
128 60 negcli π2
129 106 60 negsubi π+π2=ππ2
130 pidiv2halves π2+π2=π
131 106 60 60 130 subaddrii ππ2=π2
132 129 131 eqtri π+π2=π2
133 60 106 128 132 subaddrii π2π=π2
134 120 127 133 3eqtri iπ2iπ=π2
135 134 oveq2i logA+i+iπ2iπ=logA+i+π2
136 118 135 eqtrdi Adomarctan0<AlogA+i+iπ2-iπ=logA+i+π2
137 115 136 eqtrd Adomarctan0<Alog1iA=logA+i+π2
138 71 137 oveq12d Adomarctan0<Alog1+iAlog1iA=logAi+π2-logA+i+π2
139 58 imcld Adomarctan0<AlogAi
140 139 recnd Adomarctan0<AlogAi
141 60 a1i Adomarctan0<Aπ2
142 104 imcld Adomarctan0<AlogA+i
143 142 recnd Adomarctan0<AlogA+i
144 128 a1i Adomarctan0<Aπ2
145 140 141 143 144 addsub4d Adomarctan0<AlogAi+π2-logA+i+π2=logAilogA+i+π2-π2
146 60 60 subnegi π2π2=π2+π2
147 146 130 eqtri π2π2=π
148 147 oveq2i logAilogA+i+π2-π2=logAi-logA+i+π
149 145 148 eqtrdi Adomarctan0<AlogAi+π2-logA+i+π2=logAi-logA+i+π
150 17 138 149 3eqtrd Adomarctan0<Alog1+iAlog1iA=logAi-logA+i+π
151 139 142 resubcld Adomarctan0<AlogAilogA+i
152 readdcl logAilogA+iπlogAi-logA+i+π
153 151 123 152 sylancl Adomarctan0<AlogAi-logA+i+π
154 123 renegcli π
155 154 recni π
156 155 106 negsubi -π+π=-π-π
157 154 a1i Adomarctan0<Aπ
158 142 renegcld Adomarctan0<AlogA+i
159 30 47 logimcld Adomarctan0<Aπ<logAilogAiπ
160 159 simpld Adomarctan0<Aπ<logAi
161 73 103 logimcld Adomarctan0<Aπ<logA+ilogA+iπ
162 161 simprd Adomarctan0<AlogA+iπ
163 leneg logA+iπlogA+iππlogA+i
164 142 123 163 sylancl Adomarctan0<AlogA+iππlogA+i
165 162 164 mpbid Adomarctan0<AπlogA+i
166 157 157 139 158 160 165 ltleaddd Adomarctan0<A-π+π<logAi+logA+i
167 140 143 negsubd Adomarctan0<AlogAi+logA+i=logAilogA+i
168 166 167 breqtrd Adomarctan0<A-π+π<logAilogA+i
169 156 168 eqbrtrrid Adomarctan0<A-π-π<logAilogA+i
170 123 a1i Adomarctan0<Aπ
171 157 170 151 ltsubaddd Adomarctan0<A-π-π<logAilogA+iπ<logAi-logA+i+π
172 169 171 mpbid Adomarctan0<Aπ<logAi-logA+i+π
173 0red Adomarctan0<A0
174 6 imcld Adomarctan0<AA
175 peano2rem AA1
176 174 175 syl Adomarctan0<AA1
177 peano2re AA+1
178 174 177 syl Adomarctan0<AA+1
179 174 ltm1d Adomarctan0<AA1<A
180 174 ltp1d Adomarctan0<AA<A+1
181 176 174 178 179 180 lttrd Adomarctan0<AA1<A+1
182 ltdiv1 A1A+1A0<AA1<A+1A1A<A+1A
183 176 178 35 48 182 syl112anc Adomarctan0<AA1<A+1A1A<A+1A
184 181 183 mpbid Adomarctan0<AA1A<A+1A
185 imsub AiAi=Ai
186 6 2 185 sylancl Adomarctan0<AAi=Ai
187 imi i=1
188 187 oveq2i Ai=A1
189 186 188 eqtrdi Adomarctan0<AAi=A1
190 189 39 oveq12d Adomarctan0<AAiAi=A1A
191 imadd AiA+i=A+i
192 6 2 191 sylancl Adomarctan0<AA+i=A+i
193 187 oveq2i A+i=A+1
194 192 193 eqtrdi Adomarctan0<AA+i=A+1
195 194 83 oveq12d Adomarctan0<AA+iA+i=A+1A
196 184 190 195 3brtr4d Adomarctan0<AAiAi<A+iA+i
197 tanarg AiAi0tanlogAi=AiAi
198 30 42 197 syl2anc Adomarctan0<AtanlogAi=AiAi
199 tanarg A+iA+i0tanlogA+i=A+iA+i
200 73 99 199 syl2anc Adomarctan0<AtanlogA+i=A+iA+i
201 196 198 200 3brtr4d Adomarctan0<AtanlogAi<tanlogA+i
202 48 39 breqtrrd Adomarctan0<A0<Ai
203 argregt0 Ai0<AilogAiπ2π2
204 30 202 203 syl2anc Adomarctan0<AlogAiπ2π2
205 48 83 breqtrrd Adomarctan0<A0<A+i
206 argregt0 A+i0<A+ilogA+iπ2π2
207 73 205 206 syl2anc Adomarctan0<AlogA+iπ2π2
208 tanord logAiπ2π2logA+iπ2π2logAi<logA+itanlogAi<tanlogA+i
209 204 207 208 syl2anc Adomarctan0<AlogAi<logA+itanlogAi<tanlogA+i
210 201 209 mpbird Adomarctan0<AlogAi<logA+i
211 143 addlidd Adomarctan0<A0+logA+i=logA+i
212 210 211 breqtrrd Adomarctan0<AlogAi<0+logA+i
213 139 142 173 ltsubaddd Adomarctan0<AlogAilogA+i<0logAi<0+logA+i
214 212 213 mpbird Adomarctan0<AlogAilogA+i<0
215 151 173 170 214 ltadd1dd Adomarctan0<AlogAi-logA+i+π<0+π
216 106 addlidi 0+π=π
217 215 216 breqtrdi Adomarctan0<AlogAi-logA+i+π<π
218 154 rexri π*
219 123 rexri π*
220 elioo2 π*π*logAi-logA+i+πππlogAi-logA+i+ππ<logAi-logA+i+πlogAi-logA+i+π<π
221 218 219 220 mp2an logAi-logA+i+πππlogAi-logA+i+ππ<logAi-logA+i+πlogAi-logA+i+π<π
222 153 172 217 221 syl3anbrc Adomarctan0<AlogAi-logA+i+πππ
223 150 222 eqeltrd Adomarctan0<Alog1+iAlog1iAππ