Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
atanlogsublem
Next ⟩
atanlogsub
Metamath Proof Explorer
Ascii
Unicode
Theorem
atanlogsublem
Description:
Lemma for
atanlogsub
.
(Contributed by
Mario Carneiro
, 4-Apr-2015)
Ref
Expression
Assertion
atanlogsublem
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
−
log
1
−
i
A
∈
−
π
π
Proof
Step
Hyp
Ref
Expression
1
ax-1cn
⊢
1
∈
ℂ
2
ax-icn
⊢
i
∈
ℂ
3
simpl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
A
∈
dom
arctan
4
atandm2
⊢
A
∈
dom
arctan
↔
A
∈
ℂ
∧
1
−
i
A
≠
0
∧
1
+
i
A
≠
0
5
3
4
sylib
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
A
∈
ℂ
∧
1
−
i
A
≠
0
∧
1
+
i
A
≠
0
6
5
simp1d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
A
∈
ℂ
7
mulcl
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
A
∈
ℂ
8
2
6
7
sylancr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
A
∈
ℂ
9
addcl
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
+
i
A
∈
ℂ
10
1
8
9
sylancr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
1
+
i
A
∈
ℂ
11
5
simp3d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
1
+
i
A
≠
0
12
10
11
logcld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
1
+
i
A
∈
ℂ
13
subcl
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
−
i
A
∈
ℂ
14
1
8
13
sylancr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
1
−
i
A
∈
ℂ
15
5
simp2d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
1
−
i
A
≠
0
16
14
15
logcld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
1
−
i
A
∈
ℂ
17
12
16
imsubd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
−
log
1
−
i
A
=
ℑ
log
1
+
i
A
−
ℑ
log
1
−
i
A
18
2
a1i
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
∈
ℂ
19
18
6
18
subdid
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
A
−
i
=
i
A
−
i
i
20
ixi
⊢
i
i
=
−
1
21
20
oveq2i
⊢
i
A
−
i
i
=
i
A
−
-1
22
subneg
⊢
i
A
∈
ℂ
∧
1
∈
ℂ
→
i
A
−
-1
=
i
A
+
1
23
8
1
22
sylancl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
A
−
-1
=
i
A
+
1
24
21
23
eqtrid
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
A
−
i
i
=
i
A
+
1
25
addcom
⊢
i
A
∈
ℂ
∧
1
∈
ℂ
→
i
A
+
1
=
1
+
i
A
26
8
1
25
sylancl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
A
+
1
=
1
+
i
A
27
19
24
26
3eqtrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
A
−
i
=
1
+
i
A
28
27
fveq2d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
i
A
−
i
=
log
1
+
i
A
29
subcl
⊢
A
∈
ℂ
∧
i
∈
ℂ
→
A
−
i
∈
ℂ
30
6
2
29
sylancl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
A
−
i
∈
ℂ
31
resub
⊢
A
∈
ℂ
∧
i
∈
ℂ
→
ℜ
A
−
i
=
ℜ
A
−
ℜ
i
32
6
2
31
sylancl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
−
i
=
ℜ
A
−
ℜ
i
33
rei
⊢
ℜ
i
=
0
34
33
oveq2i
⊢
ℜ
A
−
ℜ
i
=
ℜ
A
−
0
35
6
recld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
∈
ℝ
36
35
recnd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
∈
ℂ
37
36
subid1d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
−
0
=
ℜ
A
38
34
37
eqtrid
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
−
ℜ
i
=
ℜ
A
39
32
38
eqtrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
−
i
=
ℜ
A
40
gt0ne0
⊢
ℜ
A
∈
ℝ
∧
0
<
ℜ
A
→
ℜ
A
≠
0
41
35
40
sylancom
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
≠
0
42
39
41
eqnetrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
−
i
≠
0
43
fveq2
⊢
A
−
i
=
0
→
ℜ
A
−
i
=
ℜ
0
44
re0
⊢
ℜ
0
=
0
45
43
44
eqtrdi
⊢
A
−
i
=
0
→
ℜ
A
−
i
=
0
46
45
necon3i
⊢
ℜ
A
−
i
≠
0
→
A
−
i
≠
0
47
42
46
syl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
A
−
i
≠
0
48
simpr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
<
ℜ
A
49
0re
⊢
0
∈
ℝ
50
ltle
⊢
0
∈
ℝ
∧
ℜ
A
∈
ℝ
→
0
<
ℜ
A
→
0
≤
ℜ
A
51
49
35
50
sylancr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
<
ℜ
A
→
0
≤
ℜ
A
52
48
51
mpd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
≤
ℜ
A
53
52
39
breqtrrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
≤
ℜ
A
−
i
54
logimul
π
⊢
A
−
i
∈
ℂ
∧
A
−
i
≠
0
∧
0
≤
ℜ
A
−
i
→
log
i
A
−
i
=
log
A
−
i
+
i
π
2
55
30
47
53
54
syl3anc
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
i
A
−
i
=
log
A
−
i
+
i
π
2
56
28
55
eqtr3d
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
1
+
i
A
=
log
A
−
i
+
i
π
2
57
56
fveq2d
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
=
ℑ
log
A
−
i
+
i
π
2
58
30
47
logcld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
A
−
i
∈
ℂ
59
halfpire
π
⊢
π
2
∈
ℝ
60
59
recni
π
⊢
π
2
∈
ℂ
61
2
60
mulcli
π
⊢
i
π
2
∈
ℂ
62
imadd
π
π
π
⊢
log
A
−
i
∈
ℂ
∧
i
π
2
∈
ℂ
→
ℑ
log
A
−
i
+
i
π
2
=
ℑ
log
A
−
i
+
ℑ
i
π
2
63
58
61
62
sylancl
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
+
i
π
2
=
ℑ
log
A
−
i
+
ℑ
i
π
2
64
reim
π
π
π
⊢
π
2
∈
ℂ
→
ℜ
π
2
=
ℑ
i
π
2
65
60
64
ax-mp
π
π
⊢
ℜ
π
2
=
ℑ
i
π
2
66
rere
π
π
π
⊢
π
2
∈
ℝ
→
ℜ
π
2
=
π
2
67
59
66
ax-mp
π
π
⊢
ℜ
π
2
=
π
2
68
65
67
eqtr3i
π
π
⊢
ℑ
i
π
2
=
π
2
69
68
oveq2i
π
π
⊢
ℑ
log
A
−
i
+
ℑ
i
π
2
=
ℑ
log
A
−
i
+
π
2
70
63
69
eqtrdi
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
+
i
π
2
=
ℑ
log
A
−
i
+
π
2
71
57
70
eqtrd
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
=
ℑ
log
A
−
i
+
π
2
72
addcl
⊢
A
∈
ℂ
∧
i
∈
ℂ
→
A
+
i
∈
ℂ
73
6
2
72
sylancl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
A
+
i
∈
ℂ
74
mulcl
⊢
i
∈
ℂ
∧
A
+
i
∈
ℂ
→
i
A
+
i
∈
ℂ
75
2
73
74
sylancr
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
A
+
i
∈
ℂ
76
reim
⊢
A
+
i
∈
ℂ
→
ℜ
A
+
i
=
ℑ
i
A
+
i
77
73
76
syl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
+
i
=
ℑ
i
A
+
i
78
readd
⊢
A
∈
ℂ
∧
i
∈
ℂ
→
ℜ
A
+
i
=
ℜ
A
+
ℜ
i
79
6
2
78
sylancl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
+
i
=
ℜ
A
+
ℜ
i
80
33
oveq2i
⊢
ℜ
A
+
ℜ
i
=
ℜ
A
+
0
81
36
addridd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
+
0
=
ℜ
A
82
80
81
eqtrid
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
+
ℜ
i
=
ℜ
A
83
79
82
eqtrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
+
i
=
ℜ
A
84
77
83
eqtr3d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
i
A
+
i
=
ℜ
A
85
48
84
breqtrrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
<
ℑ
i
A
+
i
86
logneg2
π
⊢
i
A
+
i
∈
ℂ
∧
0
<
ℑ
i
A
+
i
→
log
−
i
A
+
i
=
log
i
A
+
i
−
i
π
87
75
85
86
syl2anc
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
−
i
A
+
i
=
log
i
A
+
i
−
i
π
88
18
6
18
adddid
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
A
+
i
=
i
A
+
i
i
89
20
oveq2i
⊢
i
A
+
i
i
=
i
A
+
-1
90
negsub
⊢
i
A
∈
ℂ
∧
1
∈
ℂ
→
i
A
+
-1
=
i
A
−
1
91
8
1
90
sylancl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
A
+
-1
=
i
A
−
1
92
89
91
eqtrid
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
A
+
i
i
=
i
A
−
1
93
88
92
eqtrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
A
+
i
=
i
A
−
1
94
93
negeqd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
i
A
+
i
=
−
i
A
−
1
95
negsubdi2
⊢
i
A
∈
ℂ
∧
1
∈
ℂ
→
−
i
A
−
1
=
1
−
i
A
96
8
1
95
sylancl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
i
A
−
1
=
1
−
i
A
97
94
96
eqtrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
i
A
+
i
=
1
−
i
A
98
97
fveq2d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
−
i
A
+
i
=
log
1
−
i
A
99
83
41
eqnetrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℜ
A
+
i
≠
0
100
fveq2
⊢
A
+
i
=
0
→
ℜ
A
+
i
=
ℜ
0
101
100
44
eqtrdi
⊢
A
+
i
=
0
→
ℜ
A
+
i
=
0
102
101
necon3i
⊢
ℜ
A
+
i
≠
0
→
A
+
i
≠
0
103
99
102
syl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
A
+
i
≠
0
104
73
103
logcld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
A
+
i
∈
ℂ
105
61
a1i
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
π
2
∈
ℂ
106
picn
π
⊢
π
∈
ℂ
107
2
106
mulcli
π
⊢
i
π
∈
ℂ
108
107
a1i
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
i
π
∈
ℂ
109
52
83
breqtrrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
≤
ℜ
A
+
i
110
logimul
π
⊢
A
+
i
∈
ℂ
∧
A
+
i
≠
0
∧
0
≤
ℜ
A
+
i
→
log
i
A
+
i
=
log
A
+
i
+
i
π
2
111
73
103
109
110
syl3anc
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
i
A
+
i
=
log
A
+
i
+
i
π
2
112
111
oveq1d
π
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
i
A
+
i
−
i
π
=
log
A
+
i
+
i
π
2
-
i
π
113
104
105
108
112
assraddsubd
π
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
i
A
+
i
−
i
π
=
log
A
+
i
+
i
π
2
-
i
π
114
87
98
113
3eqtr3d
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
log
1
−
i
A
=
log
A
+
i
+
i
π
2
-
i
π
115
114
fveq2d
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
−
i
A
=
ℑ
log
A
+
i
+
i
π
2
-
i
π
116
61
107
subcli
π
π
⊢
i
π
2
−
i
π
∈
ℂ
117
imadd
π
π
π
π
π
π
⊢
log
A
+
i
∈
ℂ
∧
i
π
2
−
i
π
∈
ℂ
→
ℑ
log
A
+
i
+
i
π
2
-
i
π
=
ℑ
log
A
+
i
+
ℑ
i
π
2
−
i
π
118
104
116
117
sylancl
π
π
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
+
i
+
i
π
2
-
i
π
=
ℑ
log
A
+
i
+
ℑ
i
π
2
−
i
π
119
imsub
π
π
π
π
π
π
⊢
i
π
2
∈
ℂ
∧
i
π
∈
ℂ
→
ℑ
i
π
2
−
i
π
=
ℑ
i
π
2
−
ℑ
i
π
120
61
107
119
mp2an
π
π
π
π
⊢
ℑ
i
π
2
−
i
π
=
ℑ
i
π
2
−
ℑ
i
π
121
reim
π
π
π
⊢
π
∈
ℂ
→
ℜ
π
=
ℑ
i
π
122
106
121
ax-mp
π
π
⊢
ℜ
π
=
ℑ
i
π
123
pire
π
⊢
π
∈
ℝ
124
rere
π
π
π
⊢
π
∈
ℝ
→
ℜ
π
=
π
125
123
124
ax-mp
π
π
⊢
ℜ
π
=
π
126
122
125
eqtr3i
π
π
⊢
ℑ
i
π
=
π
127
68
126
oveq12i
π
π
π
π
⊢
ℑ
i
π
2
−
ℑ
i
π
=
π
2
−
π
128
60
negcli
π
⊢
−
π
2
∈
ℂ
129
106
60
negsubi
π
π
π
π
⊢
π
+
−
π
2
=
π
−
π
2
130
pidiv2halves
π
π
π
⊢
π
2
+
π
2
=
π
131
106
60
60
130
subaddrii
π
π
π
⊢
π
−
π
2
=
π
2
132
129
131
eqtri
π
π
π
⊢
π
+
−
π
2
=
π
2
133
60
106
128
132
subaddrii
π
π
π
⊢
π
2
−
π
=
−
π
2
134
120
127
133
3eqtri
π
π
π
⊢
ℑ
i
π
2
−
i
π
=
−
π
2
135
134
oveq2i
π
π
π
⊢
ℑ
log
A
+
i
+
ℑ
i
π
2
−
i
π
=
ℑ
log
A
+
i
+
−
π
2
136
118
135
eqtrdi
π
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
+
i
+
i
π
2
-
i
π
=
ℑ
log
A
+
i
+
−
π
2
137
115
136
eqtrd
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
−
i
A
=
ℑ
log
A
+
i
+
−
π
2
138
71
137
oveq12d
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
−
ℑ
log
1
−
i
A
=
ℑ
log
A
−
i
+
π
2
-
ℑ
log
A
+
i
+
−
π
2
139
58
imcld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
∈
ℝ
140
139
recnd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
∈
ℂ
141
60
a1i
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
π
2
∈
ℂ
142
104
imcld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
+
i
∈
ℝ
143
142
recnd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
+
i
∈
ℂ
144
128
a1i
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
π
2
∈
ℂ
145
140
141
143
144
addsub4d
π
π
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
+
π
2
-
ℑ
log
A
+
i
+
−
π
2
=
ℑ
log
A
−
i
−
ℑ
log
A
+
i
+
π
2
-
−
π
2
146
60
60
subnegi
π
π
π
π
⊢
π
2
−
−
π
2
=
π
2
+
π
2
147
146
130
eqtri
π
π
π
⊢
π
2
−
−
π
2
=
π
148
147
oveq2i
π
π
π
⊢
ℑ
log
A
−
i
−
ℑ
log
A
+
i
+
π
2
-
−
π
2
=
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
149
145
148
eqtrdi
π
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
+
π
2
-
ℑ
log
A
+
i
+
−
π
2
=
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
150
17
138
149
3eqtrd
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
−
log
1
−
i
A
=
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
151
139
142
resubcld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
−
ℑ
log
A
+
i
∈
ℝ
152
readdcl
π
π
⊢
ℑ
log
A
−
i
−
ℑ
log
A
+
i
∈
ℝ
∧
π
∈
ℝ
→
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
∈
ℝ
153
151
123
152
sylancl
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
∈
ℝ
154
123
renegcli
π
⊢
−
π
∈
ℝ
155
154
recni
π
⊢
−
π
∈
ℂ
156
155
106
negsubi
π
π
π
π
⊢
-
π
+
−
π
=
-
π
-
π
157
154
a1i
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
π
∈
ℝ
158
142
renegcld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
ℑ
log
A
+
i
∈
ℝ
159
30
47
logimcld
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
π
<
ℑ
log
A
−
i
∧
ℑ
log
A
−
i
≤
π
160
159
simpld
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
π
<
ℑ
log
A
−
i
161
73
103
logimcld
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
π
<
ℑ
log
A
+
i
∧
ℑ
log
A
+
i
≤
π
162
161
simprd
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
+
i
≤
π
163
leneg
π
π
π
⊢
ℑ
log
A
+
i
∈
ℝ
∧
π
∈
ℝ
→
ℑ
log
A
+
i
≤
π
↔
−
π
≤
−
ℑ
log
A
+
i
164
142
123
163
sylancl
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
+
i
≤
π
↔
−
π
≤
−
ℑ
log
A
+
i
165
162
164
mpbid
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
π
≤
−
ℑ
log
A
+
i
166
157
157
139
158
160
165
ltleaddd
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
-
π
+
−
π
<
ℑ
log
A
−
i
+
−
ℑ
log
A
+
i
167
140
143
negsubd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
+
−
ℑ
log
A
+
i
=
ℑ
log
A
−
i
−
ℑ
log
A
+
i
168
166
167
breqtrd
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
-
π
+
−
π
<
ℑ
log
A
−
i
−
ℑ
log
A
+
i
169
156
168
eqbrtrrid
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
-
π
-
π
<
ℑ
log
A
−
i
−
ℑ
log
A
+
i
170
123
a1i
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
π
∈
ℝ
171
157
170
151
ltsubaddd
π
π
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
-
π
-
π
<
ℑ
log
A
−
i
−
ℑ
log
A
+
i
↔
−
π
<
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
172
169
171
mpbid
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
−
π
<
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
173
0red
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
∈
ℝ
174
6
imcld
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
∈
ℝ
175
peano2rem
⊢
ℑ
A
∈
ℝ
→
ℑ
A
−
1
∈
ℝ
176
174
175
syl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
−
1
∈
ℝ
177
peano2re
⊢
ℑ
A
∈
ℝ
→
ℑ
A
+
1
∈
ℝ
178
174
177
syl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
+
1
∈
ℝ
179
174
ltm1d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
−
1
<
ℑ
A
180
174
ltp1d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
<
ℑ
A
+
1
181
176
174
178
179
180
lttrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
−
1
<
ℑ
A
+
1
182
ltdiv1
⊢
ℑ
A
−
1
∈
ℝ
∧
ℑ
A
+
1
∈
ℝ
∧
ℜ
A
∈
ℝ
∧
0
<
ℜ
A
→
ℑ
A
−
1
<
ℑ
A
+
1
↔
ℑ
A
−
1
ℜ
A
<
ℑ
A
+
1
ℜ
A
183
176
178
35
48
182
syl112anc
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
−
1
<
ℑ
A
+
1
↔
ℑ
A
−
1
ℜ
A
<
ℑ
A
+
1
ℜ
A
184
181
183
mpbid
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
−
1
ℜ
A
<
ℑ
A
+
1
ℜ
A
185
imsub
⊢
A
∈
ℂ
∧
i
∈
ℂ
→
ℑ
A
−
i
=
ℑ
A
−
ℑ
i
186
6
2
185
sylancl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
−
i
=
ℑ
A
−
ℑ
i
187
imi
⊢
ℑ
i
=
1
188
187
oveq2i
⊢
ℑ
A
−
ℑ
i
=
ℑ
A
−
1
189
186
188
eqtrdi
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
−
i
=
ℑ
A
−
1
190
189
39
oveq12d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
−
i
ℜ
A
−
i
=
ℑ
A
−
1
ℜ
A
191
imadd
⊢
A
∈
ℂ
∧
i
∈
ℂ
→
ℑ
A
+
i
=
ℑ
A
+
ℑ
i
192
6
2
191
sylancl
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
+
i
=
ℑ
A
+
ℑ
i
193
187
oveq2i
⊢
ℑ
A
+
ℑ
i
=
ℑ
A
+
1
194
192
193
eqtrdi
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
+
i
=
ℑ
A
+
1
195
194
83
oveq12d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
+
i
ℜ
A
+
i
=
ℑ
A
+
1
ℜ
A
196
184
190
195
3brtr4d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
A
−
i
ℜ
A
−
i
<
ℑ
A
+
i
ℜ
A
+
i
197
tanarg
⊢
A
−
i
∈
ℂ
∧
ℜ
A
−
i
≠
0
→
tan
ℑ
log
A
−
i
=
ℑ
A
−
i
ℜ
A
−
i
198
30
42
197
syl2anc
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
tan
ℑ
log
A
−
i
=
ℑ
A
−
i
ℜ
A
−
i
199
tanarg
⊢
A
+
i
∈
ℂ
∧
ℜ
A
+
i
≠
0
→
tan
ℑ
log
A
+
i
=
ℑ
A
+
i
ℜ
A
+
i
200
73
99
199
syl2anc
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
tan
ℑ
log
A
+
i
=
ℑ
A
+
i
ℜ
A
+
i
201
196
198
200
3brtr4d
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
tan
ℑ
log
A
−
i
<
tan
ℑ
log
A
+
i
202
48
39
breqtrrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
<
ℜ
A
−
i
203
argregt0
π
π
⊢
A
−
i
∈
ℂ
∧
0
<
ℜ
A
−
i
→
ℑ
log
A
−
i
∈
−
π
2
π
2
204
30
202
203
syl2anc
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
∈
−
π
2
π
2
205
48
83
breqtrrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
<
ℜ
A
+
i
206
argregt0
π
π
⊢
A
+
i
∈
ℂ
∧
0
<
ℜ
A
+
i
→
ℑ
log
A
+
i
∈
−
π
2
π
2
207
73
205
206
syl2anc
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
+
i
∈
−
π
2
π
2
208
tanord
π
π
π
π
⊢
ℑ
log
A
−
i
∈
−
π
2
π
2
∧
ℑ
log
A
+
i
∈
−
π
2
π
2
→
ℑ
log
A
−
i
<
ℑ
log
A
+
i
↔
tan
ℑ
log
A
−
i
<
tan
ℑ
log
A
+
i
209
204
207
208
syl2anc
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
<
ℑ
log
A
+
i
↔
tan
ℑ
log
A
−
i
<
tan
ℑ
log
A
+
i
210
201
209
mpbird
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
<
ℑ
log
A
+
i
211
143
addlidd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
0
+
ℑ
log
A
+
i
=
ℑ
log
A
+
i
212
210
211
breqtrrd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
<
0
+
ℑ
log
A
+
i
213
139
142
173
ltsubaddd
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
−
ℑ
log
A
+
i
<
0
↔
ℑ
log
A
−
i
<
0
+
ℑ
log
A
+
i
214
212
213
mpbird
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
−
ℑ
log
A
+
i
<
0
215
151
173
170
214
ltadd1dd
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
<
0
+
π
216
106
addlidi
π
π
⊢
0
+
π
=
π
217
215
216
breqtrdi
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
<
π
218
154
rexri
π
⊢
−
π
∈
ℝ
*
219
123
rexri
π
⊢
π
∈
ℝ
*
220
elioo2
π
π
π
π
π
π
π
π
π
π
⊢
−
π
∈
ℝ
*
∧
π
∈
ℝ
*
→
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
∈
−
π
π
↔
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
∈
ℝ
∧
−
π
<
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
∧
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
<
π
221
218
219
220
mp2an
π
π
π
π
π
π
π
π
⊢
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
∈
−
π
π
↔
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
∈
ℝ
∧
−
π
<
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
∧
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
<
π
222
153
172
217
221
syl3anbrc
π
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
A
−
i
-
ℑ
log
A
+
i
+
π
∈
−
π
π
223
150
222
eqeltrd
π
π
⊢
A
∈
dom
arctan
∧
0
<
ℜ
A
→
ℑ
log
1
+
i
A
−
log
1
−
i
A
∈
−
π
π