Step |
Hyp |
Ref |
Expression |
1 |
|
logcl |
|
2 |
1
|
3adant3 |
|
3 |
|
ax-icn |
|
4 |
|
halfpire |
|
5 |
4
|
recni |
|
6 |
3 5
|
mulcli |
|
7 |
|
efadd |
|
8 |
2 6 7
|
sylancl |
|
9 |
|
eflog |
|
10 |
9
|
3adant3 |
|
11 |
|
efhalfpi |
|
12 |
11
|
a1i |
|
13 |
10 12
|
oveq12d |
|
14 |
|
simp1 |
|
15 |
|
mulcom |
|
16 |
14 3 15
|
sylancl |
|
17 |
8 13 16
|
3eqtrd |
|
18 |
17
|
fveq2d |
|
19 |
|
addcl |
|
20 |
2 6 19
|
sylancl |
|
21 |
|
pire |
|
22 |
21
|
renegcli |
|
23 |
22
|
a1i |
|
24 |
2
|
imcld |
|
25 |
|
readdcl |
|
26 |
24 4 25
|
sylancl |
|
27 |
|
logimcl |
|
28 |
27
|
3adant3 |
|
29 |
28
|
simpld |
|
30 |
|
pirp |
|
31 |
|
rphalfcl |
|
32 |
30 31
|
ax-mp |
|
33 |
|
ltaddrp |
|
34 |
24 32 33
|
sylancl |
|
35 |
23 24 26 29 34
|
lttrd |
|
36 |
|
imadd |
|
37 |
2 6 36
|
sylancl |
|
38 |
|
reim |
|
39 |
5 38
|
ax-mp |
|
40 |
|
rere |
|
41 |
4 40
|
ax-mp |
|
42 |
39 41
|
eqtr3i |
|
43 |
42
|
oveq2i |
|
44 |
37 43
|
eqtrdi |
|
45 |
35 44
|
breqtrrd |
|
46 |
|
argrege0 |
|
47 |
4
|
renegcli |
|
48 |
47 4
|
elicc2i |
|
49 |
48
|
simp3bi |
|
50 |
46 49
|
syl |
|
51 |
21
|
recni |
|
52 |
|
pidiv2halves |
|
53 |
51 5 5 52
|
subaddrii |
|
54 |
50 53
|
breqtrrdi |
|
55 |
4
|
a1i |
|
56 |
21
|
a1i |
|
57 |
|
leaddsub |
|
58 |
24 55 56 57
|
syl3anc |
|
59 |
54 58
|
mpbird |
|
60 |
44 59
|
eqbrtrd |
|
61 |
|
ellogrn |
|
62 |
20 45 60 61
|
syl3anbrc |
|
63 |
|
logef |
|
64 |
62 63
|
syl |
|
65 |
18 64
|
eqtr3d |
|