Metamath Proof Explorer


Theorem efhalfpi

Description: The exponential of _ipi / 2 is i . (Contributed by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion efhalfpi eiπ2=i

Proof

Step Hyp Ref Expression
1 picn π
2 halfcl ππ2
3 efival π2eiπ2=cosπ2+isinπ2
4 1 2 3 mp2b eiπ2=cosπ2+isinπ2
5 coshalfpi cosπ2=0
6 sinhalfpi sinπ2=1
7 6 oveq2i isinπ2=i1
8 ax-icn i
9 8 mulridi i1=i
10 7 9 eqtri isinπ2=i
11 5 10 oveq12i cosπ2+isinπ2=0+i
12 8 addlidi 0+i=i
13 11 12 eqtri cosπ2+isinπ2=i
14 4 13 eqtri eiπ2=i