Metamath Proof Explorer


Theorem atanlogsub

Description: A variation on atanlogadd , to show that sqrt ( 1 +i z ) / sqrt ( 1 - i z ) = sqrt ( ( 1 +i z ) / ( 1 - i z ) ) under more limited conditions. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion atanlogsub A dom arctan A 0 log 1 + i A log 1 i A ran log

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 ax-icn i
3 atandm2 A dom arctan A 1 i A 0 1 + i A 0
4 3 simp1bi A dom arctan A
5 mulcl i A i A
6 2 4 5 sylancr A dom arctan i A
7 addcl 1 i A 1 + i A
8 1 6 7 sylancr A dom arctan 1 + i A
9 3 simp3bi A dom arctan 1 + i A 0
10 8 9 logcld A dom arctan log 1 + i A
11 subcl 1 i A 1 i A
12 1 6 11 sylancr A dom arctan 1 i A
13 3 simp2bi A dom arctan 1 i A 0
14 12 13 logcld A dom arctan log 1 i A
15 10 14 subcld A dom arctan log 1 + i A log 1 i A
16 15 adantr A dom arctan A 0 log 1 + i A log 1 i A
17 4 recld A dom arctan A
18 0re 0
19 lttri2 A 0 A 0 A < 0 0 < A
20 17 18 19 sylancl A dom arctan A 0 A < 0 0 < A
21 20 biimpa A dom arctan A 0 A < 0 0 < A
22 15 imnegd A dom arctan log 1 + i A log 1 i A = log 1 + i A log 1 i A
23 10 14 negsubdi2d A dom arctan log 1 + i A log 1 i A = log 1 i A log 1 + i A
24 mulneg2 i A i A = i A
25 2 4 24 sylancr A dom arctan i A = i A
26 25 oveq2d A dom arctan 1 + i A = 1 + i A
27 negsub 1 i A 1 + i A = 1 i A
28 1 6 27 sylancr A dom arctan 1 + i A = 1 i A
29 26 28 eqtrd A dom arctan 1 + i A = 1 i A
30 29 fveq2d A dom arctan log 1 + i A = log 1 i A
31 25 oveq2d A dom arctan 1 i A = 1 i A
32 subneg 1 i A 1 i A = 1 + i A
33 1 6 32 sylancr A dom arctan 1 i A = 1 + i A
34 31 33 eqtrd A dom arctan 1 i A = 1 + i A
35 34 fveq2d A dom arctan log 1 i A = log 1 + i A
36 30 35 oveq12d A dom arctan log 1 + i A log 1 i A = log 1 i A log 1 + i A
37 23 36 eqtr4d A dom arctan log 1 + i A log 1 i A = log 1 + i A log 1 i A
38 37 fveq2d A dom arctan log 1 + i A log 1 i A = log 1 + i A log 1 i A
39 22 38 eqtr3d A dom arctan log 1 + i A log 1 i A = log 1 + i A log 1 i A
40 39 adantr A dom arctan A < 0 log 1 + i A log 1 i A = log 1 + i A log 1 i A
41 atandmneg A dom arctan A dom arctan
42 17 lt0neg1d A dom arctan A < 0 0 < A
43 42 biimpa A dom arctan A < 0 0 < A
44 4 adantr A dom arctan A < 0 A
45 44 renegd A dom arctan A < 0 A = A
46 43 45 breqtrrd A dom arctan A < 0 0 < A
47 atanlogsublem A dom arctan 0 < A log 1 + i A log 1 i A π π
48 41 46 47 syl2an2r A dom arctan A < 0 log 1 + i A log 1 i A π π
49 picn π
50 49 negnegi π = π
51 50 oveq2i π π = π π
52 48 51 eleqtrrdi A dom arctan A < 0 log 1 + i A log 1 i A π π
53 40 52 eqeltrd A dom arctan A < 0 log 1 + i A log 1 i A π π
54 pire π
55 54 renegcli π
56 15 adantr A dom arctan A < 0 log 1 + i A log 1 i A
57 56 imcld A dom arctan A < 0 log 1 + i A log 1 i A
58 iooneg π π log 1 + i A log 1 i A log 1 + i A log 1 i A π π log 1 + i A log 1 i A π π
59 55 54 57 58 mp3an12i A dom arctan A < 0 log 1 + i A log 1 i A π π log 1 + i A log 1 i A π π
60 53 59 mpbird A dom arctan A < 0 log 1 + i A log 1 i A π π
61 atanlogsublem A dom arctan 0 < A log 1 + i A log 1 i A π π
62 60 61 jaodan A dom arctan A < 0 0 < A log 1 + i A log 1 i A π π
63 21 62 syldan A dom arctan A 0 log 1 + i A log 1 i A π π
64 eliooord log 1 + i A log 1 i A π π π < log 1 + i A log 1 i A log 1 + i A log 1 i A < π
65 63 64 syl A dom arctan A 0 π < log 1 + i A log 1 i A log 1 + i A log 1 i A < π
66 65 simpld A dom arctan A 0 π < log 1 + i A log 1 i A
67 65 simprd A dom arctan A 0 log 1 + i A log 1 i A < π
68 16 imcld A dom arctan A 0 log 1 + i A log 1 i A
69 ltle log 1 + i A log 1 i A π log 1 + i A log 1 i A < π log 1 + i A log 1 i A π
70 68 54 69 sylancl A dom arctan A 0 log 1 + i A log 1 i A < π log 1 + i A log 1 i A π
71 67 70 mpd A dom arctan A 0 log 1 + i A log 1 i A π
72 ellogrn log 1 + i A log 1 i A ran log log 1 + i A log 1 i A π < log 1 + i A log 1 i A log 1 + i A log 1 i A π
73 16 66 71 72 syl3anbrc A dom arctan A 0 log 1 + i A log 1 i A ran log