Metamath Proof Explorer


Theorem iooneg

Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007)

Ref Expression
Assertion iooneg ABCCABCBA

Proof

Step Hyp Ref Expression
1 ltneg ACA<CC<A
2 1 3adant2 ABCA<CC<A
3 ltneg CBC<BB<C
4 3 ancoms BCC<BB<C
5 4 3adant1 ABCC<BB<C
6 2 5 anbi12d ABCA<CC<BC<AB<C
7 6 biancomd ABCA<CC<BB<CC<A
8 rexr AA*
9 rexr BB*
10 rexr CC*
11 elioo5 A*B*C*CABA<CC<B
12 8 9 10 11 syl3an ABCCABA<CC<B
13 renegcl BB
14 renegcl AA
15 renegcl CC
16 rexr BB*
17 rexr AA*
18 rexr CC*
19 elioo5 B*A*C*CBAB<CC<A
20 16 17 18 19 syl3an BACCBAB<CC<A
21 13 14 15 20 syl3an BACCBAB<CC<A
22 21 3com12 ABCCBAB<CC<A
23 7 12 22 3bitr4d ABCCABCBA