Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | iooneg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltneg | |
|
2 | 1 | 3adant2 | |
3 | ltneg | |
|
4 | 3 | ancoms | |
5 | 4 | 3adant1 | |
6 | 2 5 | anbi12d | |
7 | 6 | biancomd | |
8 | rexr | |
|
9 | rexr | |
|
10 | rexr | |
|
11 | elioo5 | |
|
12 | 8 9 10 11 | syl3an | |
13 | renegcl | |
|
14 | renegcl | |
|
15 | renegcl | |
|
16 | rexr | |
|
17 | rexr | |
|
18 | rexr | |
|
19 | elioo5 | |
|
20 | 16 17 18 19 | syl3an | |
21 | 13 14 15 20 | syl3an | |
22 | 21 | 3com12 | |
23 | 7 12 22 | 3bitr4d | |